5 research outputs found

    Effects of Haptic Feedback on the Wrist during Virtual Manipulation

    Get PDF
    We propose a haptic system for virtual manipulation to provide feedback on the user's forearm instead of the fingertips. In addition to visual rendering of the manipulation with virtual fingertips, we employ a device to deliver normal or shear skin-stretch at multiple points near the wrist. To understand how design parameters influence the experience, we investigated the effect of the number and location of sensory feedback on stiffness perception. Participants compared stiffness values of virtual objects, while the haptic bracelet provided interaction feedback on the dorsal, ventral, or both sides of the wrist. Stiffness discrimination judgments and duration, as well as qualitative results collected verbally, indicate no significant difference in stiffness perception with stimulation at different and multiple locations.Comment: 2 pages, work-in-progress paper on haptics symposium, 202

    Effects of Haptic Feedback on the Wrist during Virtual Manipulation

    Full text link
    As an alternative to thimble devices for the fingertips, we investigate haptic systems that apply stimulus to the user's forearm. Our aim is to provide effective interaction with virtual objects, despite the lack of co-location of virtual and real-world contacts, while taking advantage of relatively large skin area and ease of mounting on the forearm. We developed prototype wearable haptic devices that provide skin deformation in the normal and shear directions, and performed a user study to determine the effects of haptic feedback in different directions and at different locations near the wrist during virtual manipulation. Participants performed significantly better while discriminating stiffness values of virtual objects with normal forces compared to shear forces. We found no differences in performance or participant preferences with regard to stimulus on the dorsal, ventral, or both sides of the forearm.Comment: 7 pages, submitted conference paper for IEEE Haptics Symposium 202
    corecore