5,742,529 research outputs found
Designing theoretically-informed implementation interventions.
Canadian Institutes of Health Research; Ontario Ministry of Healt
Effectiveness of 3D Geoelectrical Resistivity Imaging using Parallel 2D Profiles
Acquisition geometry for 3D geoelectrical resistivity
imaging in which apparent resistivity data of a set of
parallel 2D profiles are collated to 3D dataset was
evaluated. A set of parallel 2D apparent resistivity
data was generated over two model structures. The
models, horst and trough, simulate the geological
environment of a weathered profile and refuse dump
site in a crystalline basement complex respectively.
The apparent resistivity data were generated for
Wenner–alpha, Wenner–beta, Wenner–Schlumberger,
dipole–dipole, pole–dipole and pole–pole arrays with
minimum electrode separation, a (a = 2, 4, 5 and 10 m)
and inter-line spacing, L (L = a, 2a, 2.5a, 4a, 5a and
10a). The 2D apparent resistivity data for each of the
arrays were collated to 3D dataset and inverted using
a full 3D inversion code. The 3D imaging capability
and resolution of the arrays for the set of parallel 2D
profiles are presented. Grid orientation effects are
observed in the inversion images produced. Inter-line
spacing of not greater than four times the minimum
electrode separation gives reasonable inverse models.
The resolution of the inverse models can be greatly
improved if the 3D dataset is built by collating sets of
orthogonal 2D profile
Thrust effectiveness of micronozzle
This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute.Thrust of the divergent part of axially symmetric micronozzle is under the study. It’s input to total thrust is considered by means of analysis of relative thrust determined as divergent part’s thrust related to nozzle’s thrust without divergent part when gas issuing into vacuum. An inviscid one-dimensional flow is used as start condition of analysis. For this case, it is shown from conservation laws that divergent part of infinite length has finite relative thrust depending only on sort of issuing gas. Analysis of the influence of shear stress on thrust of divergent part with the use of theory of laminar boundary layer shows that optimal nozzle wall angle at the exit increases and optimal length decreases with decreasing of nozzle’s dimension in comparison with initial inviscid case. This conclusion is approved by results of numerical simulation of flow inside nozzles with throat diameter 10 micrometers and various form of divergent part based on Navier – Stokes equations with both no-slip and slip wall conditions. Detailed analysis of flow shows advantage of micronozzles with wall form far from traditionally used in “large” thrusters.This study is partially supported by the Russian Foundation for Basic Research (Project 11-08-00422-а)
Conceptualizing school effectiveness
The theoretical status of existing school effectiveness models is analyzed by using perspectives from organizational theory and models of classroom effectiveness. This leads to the formulation of a basic framework for conceptualizing school effectiveness that includes variables at the levels of the school, the context of the school and the classroom, while background variables of pupils are also taken into account. One of the conclusions is that hypothesis construction and empirical research on cross-level relationships within this basic framework are of central importance to enhance our understanding of school effectiveness
- …
