522 research outputs found

    Progressive Feature Fusion Network for Realistic Image Dehazing

    Full text link
    Single image dehazing is a challenging ill-posed restoration problem. Various prior-based and learning-based methods have been proposed. Most of them follow a classic atmospheric scattering model which is an elegant simplified physical model based on the assumption of single-scattering and homogeneous atmospheric medium. The formulation of haze in realistic environment is more complicated. In this paper, we propose to take its essential mechanism as "black box", and focus on learning an input-adaptive trainable end-to-end dehazing model. An U-Net like encoder-decoder deep network via progressive feature fusions has been proposed to directly learn highly nonlinear transformation function from observed hazy image to haze-free ground-truth. The proposed network is evaluated on two public image dehazing benchmarks. The experiments demonstrate that it can achieve superior performance when compared with popular state-of-the-art methods. With efficient GPU memory usage, it can satisfactorily recover ultra high definition hazed image up to 4K resolution, which is unaffordable by many deep learning based dehazing algorithms.Comment: 14 pages, 7 figures, 1 tables, accepted by ACCV201

    CGGAN: A Context Guided Generative Adversarial Network For Single Image Dehazing

    Full text link
    Image haze removal is highly desired for the application of computer vision. This paper proposes a novel Context Guided Generative Adversarial Network (CGGAN) for single image dehazing. Of which, an novel new encoder-decoder is employed as the generator. And it consists of a feature-extraction-net, a context-extractionnet, and a fusion-net in sequence. The feature extraction-net acts as a encoder, and is used for extracting haze features. The context-extraction net is a multi-scale parallel pyramid decoder, and is used for extracting the deep features of the encoder and generating coarse dehazing image. The fusion-net is a decoder, and is used for obtaining the final haze-free image. To obtain more better results, multi-scale information obtained during the decoding process of the context extraction decoder is used for guiding the fusion decoder. By introducing an extra coarse decoder to the original encoder-decoder, the CGGAN can make better use of the deep feature information extracted by the encoder. To ensure our CGGAN work effectively for different haze scenarios, different loss functions are employed for the two decoders. Experiments results show the advantage and the effectiveness of our proposed CGGAN, evidential improvements over existing state-of-the-art methods are obtained.Comment: 12 pages, 7 figures, 3 table

    Fractional Multiscale Fusion-based De-hazing

    Full text link
    This report presents the results of a proposed multi-scale fusion-based single image de-hazing algorithm, which can also be used for underwater image enhancement. Furthermore, the algorithm was designed for very fast operation and minimal run-time. The proposed scheme is the faster than existing algorithms for both de-hazing and underwater image enhancement and amenable to digital hardware implementation. Results indicate mostly consistent and good results for both categories of images when compared with other algorithms from the literature.Comment: 23 pages, 13 figures, 2 table

    Dense Haze: A benchmark for image dehazing with dense-haze and haze-free images

    Full text link
    Single image dehazing is an ill-posed problem that has recently drawn important attention. Despite the significant increase in interest shown for dehazing over the past few years, the validation of the dehazing methods remains largely unsatisfactory, due to the lack of pairs of real hazy and corresponding haze-free reference images. To address this limitation, we introduce Dense-Haze - a novel dehazing dataset. Characterized by dense and homogeneous hazy scenes, Dense-Haze contains 33 pairs of real hazy and corresponding haze-free images of various outdoor scenes. The hazy scenes have been recorded by introducing real haze, generated by professional haze machines. The hazy and haze-free corresponding scenes contain the same visual content captured under the same illumination parameters. Dense-Haze dataset aims to push significantly the state-of-the-art in single-image dehazing by promoting robust methods for real and various hazy scenes. We also provide a comprehensive qualitative and quantitative evaluation of state-of-the-art single image dehazing techniques based on the Dense-Haze dataset. Not surprisingly, our study reveals that the existing dehazing techniques perform poorly for dense homogeneous hazy scenes and that there is still much room for improvement.Comment: 5 pages, 2 figure

    O-HAZE: a dehazing benchmark with real hazy and haze-free outdoor images

    Full text link
    Haze removal or dehazing is a challenging ill-posed problem that has drawn a significant attention in the last few years. Despite this growing interest, the scientific community is still lacking a reference dataset to evaluate objectively and quantitatively the performance of proposed dehazing methods. The few datasets that are currently considered, both for assessment and training of learning-based dehazing techniques, exclusively rely on synthetic hazy images. To address this limitation, we introduce the first outdoor scenes database (named O-HAZE) composed of pairs of real hazy and corresponding haze-free images. In practice, hazy images have been captured in presence of real haze, generated by professional haze machines, and OHAZE contains 45 different outdoor scenes depicting the same visual content recorded in haze-free and hazy conditions, under the same illumination parameters. To illustrate its usefulness, O-HAZE is used to compare a representative set of state-of-the-art dehazing techniques, using traditional image quality metrics such as PSNR, SSIM and CIEDE2000. This reveals the limitations of current techniques, and questions some of their underlying assumptions.Comment: arXiv admin note: text overlap with arXiv:1804.0509

    Real-world Underwater Enhancement: Challenges, Benchmarks, and Solutions

    Full text link
    Underwater image enhancement is such an important low-level vision task with many applications that numerous algorithms have been proposed in recent years. These algorithms developed upon various assumptions demonstrate successes from various aspects using different data sets and different metrics. In this work, we setup an undersea image capturing system, and construct a large-scale Real-world Underwater Image Enhancement (RUIE) data set divided into three subsets. The three subsets target at three challenging aspects for enhancement, i.e., image visibility quality, color casts, and higher-level detection/classification, respectively. We conduct extensive and systematic experiments on RUIE to evaluate the effectiveness and limitations of various algorithms to enhance visibility and correct color casts on images with hierarchical categories of degradation. Moreover, underwater image enhancement in practice usually serves as a preprocessing step for mid-level and high-level vision tasks. We thus exploit the object detection performance on enhanced images as a brand new task-specific evaluation criterion. The findings from these evaluations not only confirm what is commonly believed, but also suggest promising solutions and new directions for visibility enhancement, color correction, and object detection on real-world underwater images.Comment: arXiv admin note: text overlap with arXiv:1712.04143 by other author

    Single Image Dehazing through Improved Atmospheric Light Estimation

    Full text link
    Image contrast enhancement for outdoor vision is important for smart car auxiliary transport systems. The video frames captured in poor weather conditions are often characterized by poor visibility. Most image dehazing algorithms consider to use a hard threshold assumptions or user input to estimate atmospheric light. However, the brightest pixels sometimes are objects such as car lights or streetlights, especially for smart car auxiliary transport systems. Simply using a hard threshold may cause a wrong estimation. In this paper, we propose a single optimized image dehazing method that estimates atmospheric light efficiently and removes haze through the estimation of a semi-globally adaptive filter. The enhanced images are characterized with little noise and good exposure in dark regions. The textures and edges of the processed images are also enhanced significantly.Comment: Multimedia Tools and Applications (2015

    Gated Fusion Network for Single Image Dehazing

    Full text link
    In this paper, we propose an efficient algorithm to directly restore a clear image from a hazy input. The proposed algorithm hinges on an end-to-end trainable neural network that consists of an encoder and a decoder. The encoder is exploited to capture the context of the derived input images, while the decoder is employed to estimate the contribution of each input to the final dehazed result using the learned representations attributed to the encoder. The constructed network adopts a novel fusion-based strategy which derives three inputs from an original hazy image by applying White Balance (WB), Contrast Enhancing (CE), and Gamma Correction (GC). We compute pixel-wise confidence maps based on the appearance differences between these different inputs to blend the information of the derived inputs and preserve the regions with pleasant visibility. The final dehazed image is yielded by gating the important features of the derived inputs. To train the network, we introduce a multi-scale approach such that the halo artifacts can be avoided. Extensive experimental results on both synthetic and real-world images demonstrate that the proposed algorithm performs favorably against the state-of-the-art algorithms

    NTIRE 2020 Challenge on NonHomogeneous Dehazing

    Full text link
    This paper reviews the NTIRE 2020 Challenge on NonHomogeneous Dehazing of images (restoration of rich details in hazy image). We focus on the proposed solutions and their results evaluated on NH-Haze, a novel dataset consisting of 55 pairs of real haze free and nonhomogeneous hazy images recorded outdoor. NH-Haze is the first realistic nonhomogeneous haze dataset that provides ground truth images. The nonhomogeneous haze has been produced using a professional haze generator that imitates the real conditions of haze scenes. 168 participants registered in the challenge and 27 teams competed in the final testing phase. The proposed solutions gauge the state-of-the-art in image dehazing.Comment: CVPR Workshops Proceedings 202

    Input Dropout for Spatially Aligned Modalities

    Full text link
    Computer vision datasets containing multiple modalities such as color, depth, and thermal properties are now commonly accessible and useful for solving a wide array of challenging tasks. However, deploying multi-sensor heads is not possible in many scenarios. As such many practical solutions tend to be based on simpler sensors, mostly for cost, simplicity and robustness considerations. In this work, we propose a training methodology to take advantage of these additional modalities available in datasets, even if they are not available at test time. By assuming that the modalities have a strong spatial correlation, we propose Input Dropout, a simple technique that consists in stochastic hiding of one or many input modalities at training time, while using only the canonical (e.g. RGB) modalities at test time. We demonstrate that Input Dropout trivially combines with existing deep convolutional architectures, and improves their performance on a wide range of computer vision tasks such as dehazing, 6-DOF object tracking, pedestrian detection and object classification.Comment: Accepted in ICIP 2020. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work
    • …
    corecore