24,269 research outputs found

    Effective Capacity in Cognitive Radio Broadcast Channels

    Full text link
    In this paper, we investigate effective capacity by modeling a cognitive radio broadcast channel with one secondary transmitter (ST) and two secondary receivers (SRs) under quality-of-service constraints and interference power limitations. We initially describe three different cooperative channel sensing strategies with different hard-decision combining algorithms at the ST, namely OR, Majority, and AND rules. Since the channel sensing occurs with possible errors, we consider a combined interference power constraint by which the transmission power of the secondary users (SUs) is bounded when the channel is sensed as both busy and idle. Furthermore, regarding the channel sensing decision and its correctness, there exist possibly four different transmission scenarios. We provide the instantaneous ergodic capacities of the channel between the ST and each SR in all of these scenarios. Granting that transmission outage arises when the instantaneous transmission rate is greater than the instantaneous ergodic capacity, we establish two different transmission rate policies for the SUs when the channel is sensed as idle. One of these policies features a greedy approach disregarding a possible transmission outage, and the other favors a precautious manner to prevent this outage. Subsequently, we determine the effective capacity region of this channel model, and we attain the power allocation policies that maximize this region. Finally, we present the numerical results. We first show the superiority of Majority rule when the channel sensing results are good. Then, we illustrate that a greedy transmission rate approach is more beneficial for the SUs under strict interference power constraints, whereas sending with lower rates will be more advantageous under loose interference constraints.Comment: Submitted and Accepted to IEEE Globecom 201

    Effective Capacity in Broadcast Channels with Arbitrary Inputs

    Full text link
    We consider a broadcast scenario where one transmitter communicates with two receivers under quality-of-service constraints. The transmitter initially employs superposition coding strategies with arbitrarily distributed signals and sends data to both receivers. Regarding the channel state conditions, the receivers perform successive interference cancellation to decode their own data. We express the effective capacity region that provides the maximum allowable sustainable data arrival rate region at the transmitter buffer or buffers. Given an average transmission power limit, we provide a two-step approach to obtain the optimal power allocation policies that maximize the effective capacity region. Then, we characterize the optimal decoding regions at the receivers in the space spanned by the channel fading power values. We finally substantiate our results with numerical presentations.Comment: This paper will appear in 14th International Conference on Wired&Wireless Internet Communications (WWIC

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Cognitive Radio Networks: Realistic or Not?

    Full text link
    A large volume of research has been conducted in the cognitive radio (CR) area the last decade. However, the deployment of a commercial CR network is yet to emerge. A large portion of the existing literature does not build on real world scenarios, hence, neglecting various important interactions of the research with commercial telecommunication networks. For instance, a lot of attention has been paid to spectrum sensing as the front line functionality that needs to be completed in an efficient and accurate manner to enable an opportunistic CR network architecture. This is necessary to detect the existence of spectrum holes without which no other procedure can be fulfilled. However, simply sensing (cooperatively or not) the energy received from a primary transmitter cannot enable correct dynamic spectrum access. For example, the low strength of a primary transmitter's signal does not assure that there will be no interference to a nearby primary receiver. In addition, the presence of a primary transmitter's signal does not mean that CR network users cannot access the spectrum since there might not be any primary receiver in the vicinity. Despite the existing elegant and clever solutions to the DSA problem no robust, implementable scheme has emerged. In this paper, we challenge the basic premises of the proposed schemes. We further argue that addressing the technical challenges we face in deploying robust CR networks can only be achieved if we radically change the way we design their basic functionalities. In support of our argument, we present a set of real-world scenarios, inspired by realistic settings in commercial telecommunications networks, focusing on spectrum sensing as a basic and critical functionality in the deployment of CRs. We use these scenarios to show why existing DSA paradigms are not amenable to realistic deployment in complex wireless environments.Comment: Work in progres

    Comparison of spectrum occupancy measurements using software defined radio RTL-SDR with a conventional spectrum analyzer approach

    Get PDF
    In the present day Cognitive Radio has become a realistic option for solution of the spectrum scarcity problem in wireless communication. Recently, the TV band has attracted attention due to the considerable potential for exploitation of available TV white space which is not utilized based on time and location. In this paper, we investigate spectrum occupancy of the UHF TV band in the frequency range from 470 to 862MHz by using two different devices, the low cost device RTL-SDR and high cost spectrum analyzer. The spectrum occupancy measurements provide evidence of the utility of using the inexpensive RTL SDR and illustrate its effectiveness for detection of the percentage of spectrum utilization compared with results from the conventional high cost Agilent spectrum analyzer, both systems employing various antennas
    corecore