4,022 research outputs found

    Algorithmic Randomness and Capacity of Closed Sets

    Full text link
    We investigate the connection between measure, capacity and algorithmic randomness for the space of closed sets. For any computable measure m, a computable capacity T may be defined by letting T(Q) be the measure of the family of closed sets K which have nonempty intersection with Q. We prove an effective version of Choquet's capacity theorem by showing that every computable capacity may be obtained from a computable measure in this way. We establish conditions on the measure m that characterize when the capacity of an m-random closed set equals zero. This includes new results in classical probability theory as well as results for algorithmic randomness. For certain computable measures, we construct effectively closed sets with positive capacity and with Lebesgue measure zero. We show that for computable measures, a real q is upper semi-computable if and only if there is an effectively closed set with capacity q

    The interplay of classes of algorithmically random objects

    Full text link
    We study algorithmically random closed subsets of 2ω2^\omega, algorithmically random continuous functions from 2ω2^\omega to 2ω2^\omega, and algorithmically random Borel probability measures on 2ω2^\omega, especially the interplay between these three classes of objects. Our main tools are preservation of randomness and its converse, the no randomness ex nihilo principle, which say together that given an almost-everywhere defined computable map between an effectively compact probability space and an effective Polish space, a real is Martin-L\"of random for the pushforward measure if and only if its preimage is random with respect to the measure on the domain. These tools allow us to prove new facts, some of which answer previously open questions, and reprove some known results more simply. Our main results are the following. First we answer an open question of Barmapalias, Brodhead, Cenzer, Remmel, and Weber by showing that X⊆2ω\mathcal{X}\subseteq2^\omega is a random closed set if and only if it is the set of zeros of a random continuous function on 2ω2^\omega. As a corollary we obtain the result that the collection of random continuous functions on 2ω2^\omega is not closed under composition. Next, we construct a computable measure QQ on the space of measures on 2ω2^\omega such that X⊆2ω\mathcal{X}\subseteq2^\omega is a random closed set if and only if X\mathcal{X} is the support of a QQ-random measure. We also establish a correspondence between random closed sets and the random measures studied by Culver in previous work. Lastly, we study the ranges of random continuous functions, showing that the Lebesgue measure of the range of a random continuous function is always contained in (0,1)(0,1)

    Computability of probability measures and Martin-Lof randomness over metric spaces

    Get PDF
    In this paper we investigate algorithmic randomness on more general spaces than the Cantor space, namely computable metric spaces. To do this, we first develop a unified framework allowing computations with probability measures. We show that any computable metric space with a computable probability measure is isomorphic to the Cantor space in a computable and measure-theoretic sense. We show that any computable metric space admits a universal uniform randomness test (without further assumption).Comment: 29 page

    Uniform test of algorithmic randomness over a general space

    Get PDF
    The algorithmic theory of randomness is well developed when the underlying space is the set of finite or infinite sequences and the underlying probability distribution is the uniform distribution or a computable distribution. These restrictions seem artificial. Some progress has been made to extend the theory to arbitrary Bernoulli distributions (by Martin-Loef), and to arbitrary distributions (by Levin). We recall the main ideas and problems of Levin's theory, and report further progress in the same framework. - We allow non-compact spaces (like the space of continuous functions, underlying the Brownian motion). - The uniform test (deficiency of randomness) d_P(x) (depending both on the outcome x and the measure P should be defined in a general and natural way. - We see which of the old results survive: existence of universal tests, conservation of randomness, expression of tests in terms of description complexity, existence of a universal measure, expression of mutual information as "deficiency of independence. - The negative of the new randomness test is shown to be a generalization of complexity in continuous spaces; we show that the addition theorem survives. The paper's main contribution is introducing an appropriate framework for studying these questions and related ones (like statistics for a general family of distributions).Comment: 40 pages. Journal reference and a slight correction in the proof of Theorem 7 adde

    Effective Capacity and Randomness of Closed Sets

    Full text link
    We investigate the connection between measure and capacity for the space of nonempty closed subsets of {0,1}*. For any computable measure, a computable capacity T may be defined by letting T(Q) be the measure of the family of closed sets which have nonempty intersection with Q. We prove an effective version of Choquet's capacity theorem by showing that every computable capacity may be obtained from a computable measure in this way. We establish conditions that characterize when the capacity of a random closed set equals zero or is >0. We construct for certain measures an effectively closed set with positive capacity and with Lebesgue measure zero
    • …
    corecore