4 research outputs found

    Real-Time Application Processing for FPGA-Based Resilient Embedded Systems in Harsh Environments

    Get PDF
    Real-time embedded systems nowadays get employed in harsh environments such as space, nuclear sites to carry out critical operations. Along with the traditional software based (CPU) execution, FPGAs are now also emerging as a bright prospect to accomplish such routines. However, these platforms are often get plagued by faults generated due to the high radiations in such environments. As a result, the real-time applications running on the platform could also get jeopardized. Thus, efficient execution of a set of hard real-time applications on reconfigurable systems with anomaly detection and recovery mechanism is inevitable. This work aims at tackling such problem with a “healing” approach for extreme environments. Initially, the applications are intelligently partitioned for hardware and software execution, then attempts have been made to schedule hardware applications with intermittent preemption point. Upon detecting any abnormality on such distinct points, our approach orchestrates a healing mechanism to remediate the scenario without hampering the pre-determined schedule. Experimental validation of our proposed method reveals its effectiveness

    Digital Design Techniques for Dependable High Performance Computing

    Get PDF
    As today’s process technologies continuously scale down, circuits become increasingly more vulnerable to radiation-induced soft errors in nanoscale VLSI technologies. The reduction of node capacitance and supply voltages coupled with increasingly denser chips are raising soft error rates and making them an important design issue. This research work is focused on the development of design techniques for high-reliability modern VLSI technologies, focusing mainly on Radiation-induced Single Event Transient. In this work, we evaluate the complete life-cycle of the SET pulse from the generation to the mitigation. A new simulation tool, Rad-Ray, has been developed to simulate and model the passage of heavy ion into the silicon matter of modern Integrated Circuit and predict the transient voltage pulse taking into account the physical description of the design. An analysis and mitigation tool has been developed to evaluate the propagation of the predicted SET pulses within the circuit and apply a selective mitigation technique to the sensitive nodes of the circuit. The analysis and mitigation tools have been applied to many industrial projects as well as the EUCLID space mission project, including more than ten modules. The obtained results demonstrated the effectiveness of the proposed tools

    Effective Mitigation of Radiation-induced Single Event Transient on Flash-based FPGAs

    No full text
    Due to the decreasing feature sizes of VLSI circuits, radiation induced Single Event Transients (SETs) are increasingly dominating the event ratio on modern VLSI devices. In particular, Flash-based FPGAs are characterized by the main concern of radiation-induced voltage glitches or SETs in the combinational logic. Transient pulses can be sampled by a storage element and can propagate through the circuit up to the outputs and leading to an error. In this paper, we propose a complete implementation flow including sensitivity analysis, fault tolerant mapping and fault tolerance-oriented place and route for the effective design of SET tolerant circuits on Flash-based FPGAs. In details, the proposed method allows accurate measurement of the transient pulse source induced by radiation particles and estimation of the SET error rate on the overall circuit. Besides the developed method provides a netlist mapping and place and route tool for the selective mitigation of SET effects. The proposed method has been applied to an industrial design oriented to the Euclid European Space Agency mission including more than ten different modules. The obtained results show an improvement of the total filtering capability of around 43 times with respect to the original netlist without affecting the timing constraints of the circuit

    Digital design techniques for dependable High-Performance Computing

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    corecore