102,301 research outputs found

    LDOP: Local Directional Order Pattern for Robust Face Retrieval

    Full text link
    The local descriptors have gained wide range of attention due to their enhanced discriminative abilities. It has been proved that the consideration of multi-scale local neighborhood improves the performance of the descriptor, though at the cost of increased dimension. This paper proposes a novel method to construct a local descriptor using multi-scale neighborhood by finding the local directional order among the intensity values at different scales in a particular direction. Local directional order is the multi-radius relationship factor in a particular direction. The proposed local directional order pattern (LDOP) for a particular pixel is computed by finding the relationship between the center pixel and local directional order indexes. It is required to transform the center value into the range of neighboring orders. Finally, the histogram of LDOP is computed over whole image to construct the descriptor. In contrast to the state-of-the-art descriptors, the dimension of the proposed descriptor does not depend upon the number of neighbors involved to compute the order; it only depends upon the number of directions. The introduced descriptor is evaluated over the image retrieval framework and compared with the state-of-the-art descriptors over challenging face databases such as PaSC, LFW, PubFig, FERET, AR, AT&T, and ExtendedYale. The experimental results confirm the superiority and robustness of the LDOP descriptor.Comment: Published in Multimedia Tools and Applications, Springe

    Local Multi-Grouped Binary Descriptor with Ring-based Pooling Configuration and Optimization

    Full text link
    Local binary descriptors are attracting increasingly attention due to their great advantages in computational speed, which are able to achieve real-time performance in numerous image/vision applications. Various methods have been proposed to learn data-dependent binary descriptors. However, most existing binary descriptors aim overly at computational simplicity at the expense of significant information loss which causes ambiguity in similarity measure using Hamming distance. In this paper, by considering multiple features might share complementary information, we present a novel local binary descriptor, referred as Ring-based Multi-Grouped Descriptor (RMGD), to successfully bridge the performance gap between current binary and floated-point descriptors. Our contributions are two-fold. Firstly, we introduce a new pooling configuration based on spatial ring-region sampling, allowing for involving binary tests on the full set of pairwise regions with different shapes, scales and distances. This leads to a more meaningful description than existing methods which normally apply a limited set of pooling configurations. Then, an extended Adaboost is proposed for efficient bit selection by emphasizing high variance and low correlation, achieving a highly compact representation. Secondly, the RMGD is computed from multiple image properties where binary strings are extracted. We cast multi-grouped features integration as rankSVM or sparse SVM learning problem, so that different features can compensate strongly for each other, which is the key to discriminativeness and robustness. The performance of RMGD was evaluated on a number of publicly available benchmarks, where the RMGD outperforms the state-of-the-art binary descriptors significantly.Comment: To appear in IEEE Trans. on Image Processing, 201

    Local Neighborhood Intensity Pattern: A new texture feature descriptor for image retrieval

    Full text link
    In this paper, a new texture descriptor based on the local neighborhood intensity difference is proposed for content based image retrieval (CBIR). For computation of texture features like Local Binary Pattern (LBP), the center pixel in a 3*3 window of an image is compared with all the remaining neighbors, one pixel at a time to generate a binary bit pattern. It ignores the effect of the adjacent neighbors of a particular pixel for its binary encoding and also for texture description. The proposed method is based on the concept that neighbors of a particular pixel hold a significant amount of texture information that can be considered for efficient texture representation for CBIR. Taking this into account, we develop a new texture descriptor, named as Local Neighborhood Intensity Pattern (LNIP) which considers the relative intensity difference between a particular pixel and the center pixel by considering its adjacent neighbors and generate a sign and a magnitude pattern. Since sign and magnitude patterns hold complementary information to each other, these two patterns are concatenated into a single feature descriptor to generate a more concrete and useful feature descriptor. The proposed descriptor has been tested for image retrieval on four databases, including three texture image databases - Brodatz texture image database, MIT VisTex database and Salzburg texture database and one face database AT&T face database. The precision and recall values observed on these databases are compared with some state-of-art local patterns. The proposed method showed a significant improvement over many other existing methods.Comment: Expert Systems with Applications(Elsevier

    A Novel Feature Descriptor for Image Retrieval by Combining Modified Color Histogram and Diagonally Symmetric Co-occurrence Texture Pattern

    Full text link
    In this paper, we have proposed a novel feature descriptors combining color and texture information collectively. In our proposed color descriptor component, the inter-channel relationship between Hue (H) and Saturation (S) channels in the HSV color space has been explored which was not done earlier. We have quantized the H channel into a number of bins and performed the voting with saturation values and vice versa by following a principle similar to that of the HOG descriptor, where orientation of the gradient is quantized into a certain number of bins and voting is done with gradient magnitude. This helps us to study the nature of variation of saturation with variation in Hue and nature of variation of Hue with the variation in saturation. The texture component of our descriptor considers the co-occurrence relationship between the pixels symmetric about both the diagonals of a 3x3 window. Our work is inspired from the work done by Dubey et al.[1]. These two components, viz. color and texture information individually perform better than existing texture and color descriptors. Moreover, when concatenated the proposed descriptors provide significant improvement over existing descriptors for content base color image retrieval. The proposed descriptor has been tested for image retrieval on five databases, including texture image databases - MIT VisTex database and Salzburg texture database and natural scene databases Corel 1K, Corel 5K and Corel 10K. The precision and recall values experimented on these databases are compared with some state-of-art local patterns. The proposed method provided satisfactory results from the experiments.Comment: Preprint Submitte

    Enhancing the retrieval performance by combing the texture and edge features

    Full text link
    In this paper, anew algorithm which is based on geometrical moments and local binary patterns (LBP) for content based image retrieval (CBIR) is proposed. In geometrical moments, each vector is compared with the all other vectors for edge map generation. The same concept is utilized at LBP calculation which is generating nine LBP patterns from a given 3x3 pattern. Finally, nine LBP histograms are calculated which are used as a feature vector for image retrieval. Moments are important features used in recognition of different types of images. Two experiments have been carried out for proving the worth of our algorithm. The results after being investigated shows a significant improvement in terms of their evaluation measures as compared to LBP and other existing transform domain techniques.Comment: 7 pages,8 figures, one tabl

    From handcrafted to deep local features

    Full text link
    This paper presents an overview of the evolution of local features from handcrafted to deep-learning-based methods, followed by a discussion of several benchmarks and papers evaluating such local features. Our investigations are motivated by 3D reconstruction problems, where the precise location of the features is important. As we describe these methods, we highlight and explain the challenges of feature extraction and potential ways to overcome them. We first present handcrafted methods, followed by methods based on classical machine learning and finally we discuss methods based on deep-learning. This largely chronologically-ordered presentation will help the reader to fully understand the topic of image and region description in order to make best use of it in modern computer vision applications. In particular, understanding handcrafted methods and their motivation can help to understand modern approaches and how machine learning is used to improve the results. We also provide references to most of the relevant literature and code.Comment: Preprin

    LOAD: Local Orientation Adaptive Descriptor for Texture and Material Classification

    Full text link
    In this paper, we propose a novel local feature, called Local Orientation Adaptive Descriptor (LOAD), to capture regional texture in an image. In LOAD, we proposed to define point description on an Adaptive Coordinate System (ACS), adopt a binary sequence descriptor to capture relationships between one point and its neighbors and use multi-scale strategy to enhance the discriminative power of the descriptor. The proposed LOAD enjoys not only discriminative power to capture the texture information, but also has strong robustness to illumination variation and image rotation. Extensive experiments on benchmark data sets of texture classification and real-world material recognition show that the proposed LOAD yields the state-of-the-art performance. It is worth to mention that we achieve a 65.4\% classification accuracy-- which is, to the best of our knowledge, the highest record by far --on Flickr Material Database by using a single feature. Moreover, by combining LOAD with the feature extracted by Convolutional Neural Networks (CNN), we obtain significantly better performance than both the LOAD and CNN. This result confirms that the LOAD is complementary to the learning-based features.Comment: 13 pages, 7 figure

    Role of Class-specific Features in Various Classification Frameworks for Human Epithelial (HEp-2) Cell Images

    Full text link
    The antinuclear antibody detection with human epithelial cells is a popular approach for autoimmune diseases diagnosis. The manual evaluation demands time, effort and capital, and automation in screening can greatly aid the physicians in these respects. In this work, we employ simple, efficient and visually more interpretable, class-specific features which defined based on the visual characteristics of each class. We believe that defining features with a good visual interpretation, is indeed important in a scenario, where such an approach is used in an interactive CAD system for pathologists. Considering that problem consists of few classes, and our rather simplistic feature definitions, frameworks can be structured as hierarchies of various binary classifiers. These variants include frameworks which are earlier explored and some which are not explored for this task. We perform various experiments which include traditional texture features and demonstrate the effectiveness of class-specific features in various frameworks. We make insightful comparisons between different types of classification frameworks given their silent aspects and pros and cons over each other. We also demonstrate an experiment with only intermediates samples for testing. The proposed work yields encouraging results with respect to the state-of-the-art and highlights the role of class-specific features in different classification frameworks

    PCANet-II: When PCANet Meets the Second Order Pooling

    Full text link
    PCANet, as one noticeable shallow network, employs the histogram representation for feature pooling. However, there are three main problems about this kind of pooling method. First, the histogram-based pooling method binarizes the feature maps and leads to inevitable discriminative information loss. Second, it is difficult to effectively combine other visual cues into a compact representation, because the simple concatenation of various visual cues leads to feature representation inefficiency. Third, the dimensionality of histogram-based output grows exponentially with the number of feature maps used. In order to overcome these problems, we propose a novel shallow network model, named as PCANet-II. Compared with the histogram-based output, the second order pooling not only provides more discriminative information by preserving both the magnitude and sign of convolutional responses, but also dramatically reduces the size of output features. Thus we combine the second order statistical pooling method with the shallow network, i.e., PCANet. Moreover, it is easy to combine other discriminative and robust cues by using the second order pooling. So we introduce the binary feature difference encoding scheme into our PCANet-II to further improve robustness. Experiments demonstrate the effectiveness and robustness of our proposed PCANet-II method

    A Performance Evaluation of Local Features for Image Based 3D Reconstruction

    Full text link
    This paper performs a comprehensive and comparative evaluation of the state of the art local features for the task of image based 3D reconstruction. The evaluated local features cover the recently developed ones by using powerful machine learning techniques and the elaborately designed handcrafted features. To obtain a comprehensive evaluation, we choose to include both float type features and binary ones. Meanwhile, two kinds of datasets have been used in this evaluation. One is a dataset of many different scene types with groundtruth 3D points, containing images of different scenes captured at fixed positions, for quantitative performance evaluation of different local features in the controlled image capturing situations. The other dataset contains Internet scale image sets of several landmarks with a lot of unrelated images, which is used for qualitative performance evaluation of different local features in the free image collection situations. Our experimental results show that binary features are competent to reconstruct scenes from controlled image sequences with only a fraction of processing time compared to use float type features. However, for the case of large scale image set with many distracting images, float type features show a clear advantage over binary ones
    corecore