1,773 research outputs found

    A Constraint Programming Approach for Non-Preemptive Evacuation Scheduling

    Full text link
    Large-scale controlled evacuations require emergency services to select evacuation routes, decide departure times, and mobilize resources to issue orders, all under strict time constraints. Existing algorithms almost always allow for preemptive evacuation schedules, which are less desirable in practice. This paper proposes, for the first time, a constraint-based scheduling model that optimizes the evacuation flow rate (number of vehicles sent at regular time intervals) and evacuation phasing of widely populated areas, while ensuring a nonpreemptive evacuation for each residential zone. Two optimization objectives are considered: (1) to maximize the number of evacuees reaching safety and (2) to minimize the overall duration of the evacuation. Preliminary results on a set of real-world instances show that the approach can produce, within a few seconds, a non-preemptive evacuation schedule which is either optimal or at most 6% away of the optimal preemptive solution.Comment: Submitted to the 21st International Conference on Principles and Practice of Constraint Programming (CP 2015). 15 pages + 1 reference pag

    Discrete Time Dynamic Traffic Assignment Models with Lane Reversals for Evacuation Planning

    Get PDF
    In an event of a natural or man-made disaster, an evacuation is likely to be called for to move residents away from potentially hazardous areas. Road congestion and traffic stalling is a common occurrence as residents evacuate towns and cities for safe refuges. Lane reversal, or contra-flow, is a remedy to increase outbound flow capacities from disaster areas which in turn will reduce evacuation time of evacuees during emergency situations. This thesis presents a discrete-time traffic assignment system with lane reversals which incorporates multiple sources and multiple destinations to predict optimal traffic flow at various times throughout the entire planning horizon. With the realization of lane reversals, naturally the threat of potential head-on collisions emerges. To avoid the occurrence of such situations, a collision prevention constraint is introduced to limit directional flow on lanes based on departure time.;This model belongs to the class of dynamic traffic assignment (DTA) problems. Initially the model was formulated as a discrete-time system optimum dynamic traffic assignment (DTA-SO) problem, which is a mixed integer nonlinear programming problem. Through various proven theorems, a linearized upper bound was derived that is able to approximate the original problem with very high precision. The result is an upper bound mixed integer linear programming problem (DTA-UB). The discrete-time DTA model is suitable for evacuation planning because the model is able to take care of dynamic demands, and temporal ow assignment. Also, simultaneous route and departure is assumed and an appropriate travel time function is used to approximate the minimum and maximum travel time on an arc.;This thesis discusses the different attributes that relates to Dynamic Traffic Assignment. DTA model properties and formulation methodology are also expounded upon. A model analysis that breaks down each output into individual entities is provided to further understand the computational results of small networks. A no reversal DTA-UB model (NRDTA-UB) is formulated and its computational results are compared to DTA-UB. Through the extensive computational results, DTA-UB is proven to obtain much better results than NRDTA-UB despite having longer solving time. This is a step toward realizing the supremacy of having lane reversals in a real-life evacuation scenario

    OPTIMIZATION MODELS AND METHODOLOGIES TO SUPPORT EMERGENCY PREPAREDNESS AND POST-DISASTER RESPONSE

    Get PDF
    This dissertation addresses three important optimization problems arising during the phases of pre-disaster emergency preparedness and post-disaster response in time-dependent, stochastic and dynamic environments. The first problem studied is the building evacuation problem with shared information (BEPSI), which seeks a set of evacuation routes and the assignment of evacuees to these routes with the minimum total evacuation time. The BEPSI incorporates the constraints of shared information in providing on-line instructions to evacuees and ensures that evacuees departing from an intermediate or source location at a mutual point in time receive common instructions. A mixed-integer linear program is formulated for the BEPSI and an exact technique based on Benders decomposition is proposed for its solution. Numerical experiments conducted on a mid-sized real-world example demonstrate the effectiveness of the proposed algorithm. The second problem addressed is the network resilience problem (NRP), involving an indicator of network resilience proposed to quantify the ability of a network to recover from randomly arising disruptions resulting from a disaster event. A stochastic, mixed integer program is proposed for quantifying network resilience and identifying the optimal post-event course of action to take. A solution technique based on concepts of Benders decomposition, column generation and Monte Carlo simulation is proposed. Experiments were conducted to illustrate the resilience concept and procedure for its measurement, and to assess the role of network topology in its magnitude. The last problem addressed is the urban search and rescue team deployment problem (USAR-TDP). The USAR-TDP seeks an optimal deployment of USAR teams to disaster sites, including the order of site visits, with the ultimate goal of maximizing the expected number of saved lives over the search and rescue period. A multistage stochastic program is proposed to capture problem uncertainty and dynamics. The solution technique involves the solution of a sequence of interrelated two-stage stochastic programs with recourse. A column generation-based technique is proposed for the solution of each problem instance arising as the start of each decision epoch over a time horizon. Numerical experiments conducted on an example of the 2010 Haiti earthquake are presented to illustrate the effectiveness of the proposed approach

    Multi-objective decision analytics for short-notice bushfire evacuation: An Australian case study

    Get PDF
    This paper develops a multi-objective optimisation model to compute resource allocation,shelter assignment and routing options to evacuate late evacuees from affected areas to shelters.Three bushfire scenarios are analysed to incorporate constraints of restricted time-window and potential road disruptions.Capacity and number of rescue vehicles and shelters are other constraints that are identical in all scenarios.The proposed mathematical model is solved by ?-constraint approach.Objective functions are simultaneously optimised to maximise the total number of evacuees and assigned rescue vehicles and shelters.We argue that this model provides a scenario-based decision-making platform to aid minimise resource utilisation and maximise coverage of late evacuees

    Resource location for relief distribution and victim evacuation after a sudden-onset disaster

    Get PDF
    Quick responses to sudden-onset disasters and the effective allocation of rescue and relief resources are vital for saving lives and reducing the suffering of the victims. This paper deals with the problem of positioning medical and relief distribution facilities after a sudden-onset disaster event. The background of this study is the situation in Padang Pariaman District after the West Sumatra earthquake. Three models are built for the resource location and deployment decisions. The first model reflects current practice where relief distribution and victim evacuation are performed separately and relief is distributed by distribution centers within administrative boundaries. The second model allows relief to be distributed across boundaries by any distribution center. The third model further breaks down functional barriers to allow the evacuation and relief distribution operations share vehicles. These models are solved directly for small problems and by using a direct approach as well as heuristics for large problems. Test results on small problems show that resource sharing measures, both across boundaries and across different functions, improve on current practice. For large problems, the results give similar conclusions to those for small problems when each model is solved using its own best approach

    Metaheuristic Algorithms for Spatial Multi-Objective Decision Making

    Get PDF
    Spatial decision making is an everyday activity, common to individuals and organizations. However, recently there is an increasing interest in the importance of spatial decision-making systems, as more decision-makers with concerns about sustainability, social, economic, environmental, land use planning, and transportation issues discover the benefits of geographical information. Many spatial decision problems are regarded as optimization problems, which involve a large set of feasible alternatives, multiple conflicting objectives that are difficult and complex to solve. Hence, Multi-Objective Optimization methods (MOO)—metaheuristic algorithms integrated with Geographical Information Systems (GIS) are appealing to be powerful tools in these regards, yet their implementation in spatial context is still challenging. In this thesis, various metaheuristic algorithms are adopted and improved to solve complex spatial problems. Disaster management and urban planning are used as case studies of this thesis.These case studies are explored in the four papers that are part of this thesis. In paper I, four metaheuristic algorithms have been implemented on the same spatial multi-objective problem—evacuation planning, to investigate their performance and potential. The findings show that all tested algorithms were effective in solving the problem, although in general, some had higher performance, while others showed the potential of being flexible to be modified to fit better to the problem. In the same context, paper II identified the effectiveness of the Multi-objective Artificial Bee Colony (MOABC) algorithm when improved to solve the evacuation problem. In paper III, we proposed a multi-objective optimization approach for urban evacuation planning that considered three spatial objectives which were optimized using an improved Multi-Objective Cuckoo Search algorithm (MOCS). Both improved algorithms (MOABC and MOCS) proved to be efficient in solving evacuation planning when compared to their standard version and other algorithms. Moreover, Paper IV proposed an urban land-use allocation model that involved three spatial objectives and proposed an improved Non-dominated Sorting Biogeography-based Optimization algorithm (NSBBO) to solve the problem efficiently and effectively.Overall, the work in this thesis demonstrates that different metaheuristic algorithms have the potential to change the way spatial decision problems are structured and can improve the transparency and facilitate decision-makers to map solutions and interactively modify decision preferences through trade-offs between multiple objectives. Moreover, the obtained results can be used in a systematic way to develop policy recommendations. From the perspective of GIS - Multi-Criteria Decision Making (MCDM) research, the thesis contributes to spatial optimization modelling and extended knowledge on the application of metaheuristic algorithms. The insights from this thesis could also benefit the development and practical implementation of other Artificial Intelligence (AI) techniques to enhance the capabilities of GIS for tackling complex spatial multi-objective decision problems in the future
    • …
    corecore