3 research outputs found

    Learning and Transfer of Modulated Locomotor Controllers

    Get PDF
    We study a novel architecture and training procedure for locomotion tasks. A high-frequency, low-level "spinal" network with access to proprioceptive sensors learns sensorimotor primitives by training on simple tasks. This pre-trained module is fixed and connected to a low-frequency, high-level "cortical" network, with access to all sensors, which drives behavior by modulating the inputs to the spinal network. Where a monolithic end-to-end architecture fails completely, learning with a pre-trained spinal module succeeds at multiple high-level tasks, and enables the effective exploration required to learn from sparse rewards. We test our proposed architecture on three simulated bodies: a 16-dimensional swimming snake, a 20-dimensional quadruped, and a 54-dimensional humanoid. Our results are illustrated in the accompanying video at https://youtu.be/sboPYvhpraQComment: Supplemental video available at https://youtu.be/sboPYvhpra

    Effective Control Knowledge Transfer Through Learning Skill and Representation Hierarchies

    No full text
    Learning capabilities of computer systems still lag far behind biological systems. One of the reasons can be seen in the inefficient re-use of control knowledge acquired over the lifetime of the artificial learning system. To address this deficiency, this paper presents a learning architecture which transfers control knowledge in the form of behavioral skills and corresponding representation concepts from one task to subsequent learning tasks. The presented system uses this knowledge to construct a more compact state space representation for learning while assuring bounded optimality of the learned task policy by utilizing a representation hierarchy. Experimental results show that the presented method can significantly outperform learning on a flat state space representation and the MAXQ method for hierarchical reinforcement learning.
    corecore