29,693 research outputs found

    Evolution of cooperation driven by majority-pressure based interdependence

    Full text link
    © 2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft. The evolution of cooperation on interdependent networks is arousing increasing concern based on the fact that more and more complex systems in the real-world have been proven to be organized in the form of multi-layer networks rather than single-layer networks. In this study, we examine the effects of self-organized interdependence on the evolution and stabilization of cooperation with social dilemmas depicted by the Prisoner's Dilemma Game (PDG) and the Public Goods Game (PGG) in which agents with the most common strategy have the chance to be rewarded proportionally to the fitness of corresponding agents belonging to the other network. We show that such a type-free rewarding rule, independent of game strategy, establishes a time-varying interdependence between two initially independent populations whereby cooperation is highly promoted as well as stabilized both in the two-player PDG and in the multi-player PGG. Majority-pressure based interdependence at stake has proven pretty neutral in regard to game strategy because it is contingent on strategy configuration rather than strategy itself, which thus gives birth to homologous communities, including cooperative as well as non-cooperative, and thereby an enhanced spatial reciprocity between non-identical networks is triggered. Of particular interest is the double-edged sword effect of network interdependence on cooperation although in most instances the heavier the interdependence, the better the evolution of cooperation. Furthermore, interpretations of the nontrivial relationship between cooperation and benchmark threshold measuring the strategy's local popularity highlight that rewarding the minimum majority is optimal for the evolution of cooperation in such scenario. Finally, we claim our observations are also quite robust with respect to mutation

    Collective behavior and evolutionary games - An introduction

    Full text link
    This is an introduction to the special issue titled "Collective behavior and evolutionary games" that is in the making at Chaos, Solitons & Fractals. The term collective behavior covers many different phenomena in nature and society. From bird flocks and fish swarms to social movements and herding effects, it is the lack of a central planner that makes the spontaneous emergence of sometimes beautifully ordered and seemingly meticulously designed behavior all the more sensational and intriguing. The goal of the special issue is to attract submissions that identify unifying principles that describe the essential aspects of collective behavior, and which thus allow for a better interpretation and foster the understanding of the complexity arising in such systems. As the title of the special issue suggests, the later may come from the realm of evolutionary games, but this is certainly not a necessity, neither for this special issue, and certainly not in general. Interdisciplinary work on all aspects of collective behavior, regardless of background and motivation, and including synchronization and human cognition, is very welcome.Comment: 6 two-column pages, 1 figure; accepted for publication in Chaos, Solitons & Fractals [the special issue is available at http://www.sciencedirect.com/science/journal/09600779/56

    Darwinism, probability and complexity : market-based organizational transformation and change explained through the theories of evolution

    Get PDF
    The study of transformation and change is one of the most important areas of social science research. This paper synthesizes and critically reviews the emerging traditions in the study of change dynamics. Three mainstream theories of evolution are introduced to explain change: the Darwinian concept of survival of the fittest, the Probability model and the Complexity approach. The literature review provides a basis for development of research questions that search for a more comprehensive understanding of organizational change. The paper concludes by arguing for the development of a complementary research tradition, which combines an evolutionary and organizational analysis of transformation and change

    Globalization, NGOs and Multi-Sectoral Relations

    Get PDF
    This paper seeks to make sense of the impact of globalization on nonprofit, nongovernmental organizations. We argue that globalization processes have contributed to the rising numbers and influence of NGOs in many countries, and particularly in the international arena. International NGOs and NGO alliances are emerging as increasingly influential players in international decision-making, and we discuss some of the roles they can be expected to play in the future. We consider whether the emergence of domestic and international NGOs as important policy makers strengthens or weakens the future of democratic accountability, and we suggest several patterns of interaction among civil society, government and business in future governance issues.This publication is Hauser Center Working Paper No. 1. The Hauser Center Working Paper Series was launched during the summer of 2000. The Series enables the Hauser Center to share with a broad audience important works-in-progress written by Hauser Center scholars and researchers

    Evolution of cooperation in synergistically evolving dynamic interdependent networks: Fundamental advantages of coordinated network evolution

    Full text link
    © 2019 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft. Real networks are not only multi-layered yet also dynamic. The role of coordinated network evolution regarding dynamic multi-layer networks where both network and strategy evolution simultaneously show diverse interdependence by layers remains poorly addressed. Here, we propose a general and simple coevolution framework to analyze how coordination of different dynamical processes affects strategy propagation in synergistically evolving interdependent networks. The strategic feedback constitutes the main driving force of network evolution yet the inherent cross-layer self-optimization functions as its compensation. We show that these two ingredients often catalyze a better performance of network evolution in propagating cooperation. Coordinated network evolution may be a double-edged sword to cooperation and the network-Adapting rate plays a crucial role in flipping its double-sided effect. It often economizes the cost and time consumption for driving the system to the full cooperation phase. Importantly, strongly coupled slow-Tuned networks can outperform weakly coupled fast-regulated networks in solving social dilemmas, highlighting the fundamental advantages of coordinated network evolution and the importance of synergistic effect of dynamical processes in upholding human cooperation in multiplex networks

    Interspecific Bacterial Interactions are Reflected in Multispecies Biofilm Spatial Organization

    Get PDF
    Interspecies interactions are essential for the persistence and development of any kind of complex community, and microbial biofilms are no exception. Multispecies biofilms are structured and spatially defined communities that have received much attention due to their omnipresence in natural environments. Species residing in these complex bacterial communities usually interact both intra- and interspecifically. Such interactions are considered to not only be fundamental in shaping overall biomass and the spatial distribution of cells residing in multispecies biofilms, but also to result in coordinated regulation of gene expression in the different species present. These communal interactions often lead to emergent properties in biofilms, such as enhanced tolerance against antibiotics, host immune responses and other stresses, which have been shown to provide benefits to all biofilm members not only the enabling sub-populations. However, the specific molecular mechanisms of cellular processes affecting spatial organization, and vice versa, are poorly understood and very complex to unravel. Therefore, detailed description of the spatial organization of individual bacterial cells in multispecies communities can be an alternative strategy to reveal the nature of interspecies interactions of constituent species. Closing the gap between visual observation and biological processes may become crucial for resolving biofilm related problems, which is of utmost importance to environmental, industrial, and clinical implications. This review briefly presents the state of the art of studying interspecies interactions and spatial organization of multispecies communities, aiming to support theoretical and practical arguments for further advancement of this field
    • …
    corecore