1,408 research outputs found

    Effect of adjacent-channel interference in IEEE 802.11 WLANs

    Get PDF
    Frequency channels are a scarce resource in the ISM bands used by IEEE 802.11 WLANs. Current radio resource management is often limited to a small number of nonoverlapping channels, which leaves only three possible channels in the 2.4GHz band used in IEEE 802.11b/g networks. In this paper we study and quantify the effect of adjacent channel interference, which is caused by transmissions in partially overlapping channels. We propose a model that is able to determine under what circumstances the use of adjacent channels is justified. The model can also be used to assist different radio resource management mechanisms (e.g. transmitted power assignments

    Spectrum Utilization and Congestion of IEEE 802.11 Networks in the 2.4 GHz ISM Band

    Get PDF
    Wi-Fi technology, plays a major role in society thanks to its widespread availability, ease of use and low cost. To assure its long term viability in terms of capacity and ability to share the spectrum efficiently, it is of paramount to study the spectrum utilization and congestion mechanisms in live environments. In this paper the service level in the 2.4 GHz ISM band is investigated with focus on todays IEEE 802.11 WLAN systems with support for the 802.11e extension. Here service level means the overall Quality of Service (QoS), i.e. can all devices fulfill their communication needs? A crosslayer approach is used, since the service level can be measured at several levels of the protocol stack. The focus is on monitoring at both the Physical (PHY) and the Medium Access Control (MAC) link layer simultaneously by performing respectively power measurements with a spectrum analyzer to assess spectrum utilization and packet sniffing to measure the congestion. Compared to traditional QoS analysis in 802.11 networks, packet sniffing allows to study the occurring congestion mechanisms more thoroughly. The monitoring is applied for the following two cases. First the influence of interference between WLAN networks sharing the same radio channel is investigated in a controlled environment. It turns out that retry rate, Clear-ToSend (CTS), Request-To-Send (RTS) and (Block) Acknowledgment (ACK) frames can be used to identify congestion, whereas the spectrum analyzer is employed to identify the source of interference. Secondly, live measurements are performed at three locations to identify this type of interference in real-live situations. Results show inefficient use of the wireless medium in certain scenarios, due to a large portion of management and control frames compared to data content frames (i.e. only 21% of the frames is identified as data frames)

    IEEE Wireless LAN capacity in multicell environments with rate adaptation

    Get PDF
    Since the advent of the first IEEE 802.11 standard, many research efforts have been spent on evaluating different aspects of the specification. In this paper, we present a new method to predict the capacity of a multicell IEEE 802.11 network. The mechanism takes the effect of co-channel and adjacent channel interference into account. In addition, the study of a common rate adaptation algorithm is included. When the effect of rate adaptation is considered within the throughput computation, the results provided by our algorithm are closer to the measurements obtained in a real scenario. To the best of our knowledge, this paper presents the first analytical study of throughput performance including both types of interferences and the effect of bit rate adaptatio
    corecore