1,233 research outputs found
Electrically driven convection in a thin annular film undergoing circular Couette flow
We investigate the linear stability of a thin, suspended, annular film of
conducting fluid with a voltage difference applied between its inner and outer
edges. For a sufficiently large voltage, such a film is unstable to
radially-driven electroconvection due to charges which develop on its free
surfaces. The film can also be subjected to a Couette shear by rotating its
inner edge. This combination is experimentally realized using films of smectic
A liquid crystals. In the absence of shear, the convective flow consists of a
stationary, azimuthally one-dimensional pattern of symmetric, counter-rotating
vortex pairs. When Couette flow is applied, an azimuthally traveling pattern
results. When viewed in a co-rotating frame, the traveling pattern consists of
pairs of asymmetric vortices. We calculate the neutral stability boundary for
arbitrary radius ratio  and Reynolds number  of the shear
flow, and obtain the critical control parameter  and the critical azimuthal mode number . The
Couette flow suppresses the onset of electroconvection, so that . The calculated suppression is
compared with experiments performed at  and .Comment: 17 pages, 2 column with 9 included eps figures. See also
  http://mobydick.physics.utoronto.c
Numerical study of surface tension driven convection in thermal magnetic fluids
Microgravity conditions pose unique challenges for fluid handling and heat transfer applications. By controlling (curtailing or augmenting) the buoyant and thermocapillary convection, the latter being the dominant convective flow in a microgravity environment, significant advantages can be achieved in space based processing. The control of this surface tension gradient driven flow is sought using a magnetic field, and the effects of these are studied computationally. A two-fluid layer system, with the lower fluid being a non-conducting ferrofluid, is considered under the influence of a horizontal temperature gradient. To capture the deformable interface, a numerical method to solve the Navier???Stokes equations, heat equations, and Maxwell???s equations was developed using a hybrid level set/ volume-of-fluid technique. The convective velocities and heat fluxes were studied under various regimes of the thermal Marangoni number Ma, the external field represented by the magnetic Bond number Bom, and various gravity levels, Fr. Regimes where the convection were either curtailed or augmented were identified. It was found that the surface force due to the step change in the magnetic permeability at the interface could be suitably utilized to control the instability at the interface.published or submitted for publicationis peer reviewe
Transient Thermal Modeling of an Axial Flux Permanent Magnet (AFPM) Machine Using a Hybrid Thermal Model
This paper presents the development of a hybrid thermal model for the EVO Electric AFM 140 Axial Flux Permanent Magnet (AFPM) machine as used in hybrid and electric vehicles. The adopted approach is based on a hybrid lumped parameter and finite difference method. The proposed method divides each motor component into regular elements which are connected together in a thermal resistance network representing all the physical connections in all three dimensions. The element shape and size are chosen according to the component geometry to ensure consistency. The fluid domain is lumped into one region with averaged heat transfer parameters connecting it to the solid domain. Some model parameters are obtained from Computation Fluid Dynamic (CFD) simulation and empirical data. The hybrid thermal model is described by a set of coupled linear first order differential equations which is discretised and solved iteratively to obtain the temperature profile. The computation involved is low and thus the model is suitable for transient temperature predictions. The maximum error in temperature prediction is 3.4% and the mean error is consistently lower than the mean error due to uncertainty in measurements. The details of the model development, temperature predictions and suggestions for design improvements are presented in this paper.Accepted versio
Low NOx heavy fuel combustor concept program
A total of twelve low NOx combustor configurations, embodying three different combustion concepts, were designed and fabricated as modular units. These configurations were evaluated experimentally for exhaust emission levels and for mechanical integrity. Emissions data were obtained in depth on two of the configurations
Definition of smolder experiments for Spacelab
The feasibility of conducting experiments in space on smoldering combustion was studied to conceptually design specific smoldering experiments to be conducted in the Shuttle/Spacelab System. Design information for identified experiment critical components is provided. The analytical and experimental basis for conducting research on smoldering phenomena in space was established. Physical descriptions of the various competing processes pertaining to smoldering combustion were identified. The need for space research was defined based on limitations of existing knowledge and limitations of ground-based reduced-gravity experimental facilities
NASA/MSFC FY88 Global Scale Atmospheric Processes Research Program Review
Interest in environmental issues and the magnitude  of the environmental changes continues. One way to gain more understanding of the atmosphere is to  make measurements on a global scale from space. The Earth Observation System is a series of new sensors to measure globally atmospheric parameters. Analysis of satellite data by developing algorithms to interpret the radiance information improves the understanding and also defines requirements for these sensors. One measure of knowledge of the atmosphere lies in the  ability to predict its behavior. Use of numerical  and experimental models provides a better understanding of these processes. These efforts are described in the context of satellite data analysis and fundamental studies of atmospheric dynamics which examine selected processes important to the global circulation
Dynamic sealing principles
The fundamental principles governing dynamic sealing operation are discussed. Different seals are described in terms of these principles. Despite the large variety of detailed construction, there appear to be some basic principles, or combinations of basic principles, by which all seals function, these are presented and discussed. Theoretical and practical considerations in the application of these principles are discussed. Advantages, disadvantages, limitations, and application examples of various conventional and special seals are presented. Fundamental equations governing liquid and gas flows in thin film seals, which enable leakage calculations to be made, are also presented. Concept of flow functions, application of Reynolds lubrication equation, and nonlubrication equation flow, friction and wear; and seal lubrication regimes are explained
Development of compressor end seals stator interstage seals, and stator pivot seals in advanced air breathing propulsion systems. Part 1: Screening studies and analysis
Design and characteristics of 28-inch diameter seals for air breathing propulsion systems - Part 
Recommended from our members
Drift waves and transport
Drift waves occur universally in magnetized plasmas producing the dominant mechanism for the transport of particles, energy and momentum across magnetic field lines. A wealth of information obtained from quasistationary laboratory experiments for plasma confinement is reviewed for drift waves driven unstable by density gradients, temperature gradients and trapped particle effects. The modern understanding of Bohm transport and the role of sheared flows and magnetic shear in reducing the transport to the gyro-Bohm rate are explained and illustrated with large scale computer simulations. The types of mixed wave and vortex turbulence spontaneously generated in nonuniform plasmas are derived with reduced magnetized fluid descriptions. The types of theoretical descriptions reviewed include weak turbulence theory, Kolmogorov anisotropic spectral indices, and the mixing length. A number of standard turbulent diffusivity formulas are given for the various space-time Scales of the drift-wave turbulent mixing. [S0034-6861(99)00803-X].Physic
- …
