64 research outputs found

    Acoustic Approaches to Gender and Accent Identification

    Get PDF
    There has been considerable research on the problems of speaker and language recognition from samples of speech. A less researched problem is that of accent recognition. Although this is a similar problem to language identification, di�erent accents of a language exhibit more fine-grained di�erences between classes than languages. This presents a tougher problem for traditional classification techniques. In this thesis, we propose and evaluate a number of techniques for gender and accent classification. These techniques are novel modifications and extensions to state of the art algorithms, and they result in enhanced performance on gender and accent recognition. The first part of the thesis focuses on the problem of gender identification, and presents a technique that gives improved performance in situations where training and test conditions are mismatched. The bulk of this thesis is concerned with the application of the i-Vector technique to accent identification, which is the most successful approach to acoustic classification to have emerged in recent years. We show that it is possible to achieve high accuracy accent identification without reliance on transcriptions and without utilising phoneme recognition algorithms. The thesis describes various stages in the development of i-Vector based accent classification that improve the standard approaches usually applied for speaker or language identification, which are insu�cient. We demonstrate that very good accent identification performance is possible with acoustic methods by considering di�erent i-Vector projections, frontend parameters, i-Vector configuration parameters, and an optimised fusion of the resulting i-Vector classifiers we can obtain from the same data. We claim to have achieved the best accent identification performance on the test corpus for acoustic methods, with up to 90% identification rate. This performance is even better than previously reported acoustic-phonotactic based systems on the same corpus, and is very close to performance obtained via transcription based accent identification. Finally, we demonstrate that the utilization of our techniques for speech recognition purposes leads to considerably lower word error rates. Keywords: Accent Identification, Gender Identification, Speaker Identification, Gaussian Mixture Model, Support Vector Machine, i-Vector, Factor Analysis, Feature Extraction, British English, Prosody, Speech Recognition

    Investigation of the impact of high frequency transmitted speech on speaker recognition

    Get PDF
    Thesis (MScEng)--Stellenbosch University, 2002.Some digitised pages may appear illegible due to the condition of the original hard copy.ENGLISH ABSTRACT: Speaker recognition systems have evolved to a point where near perfect performance can be obtained under ideal conditions, even if the system must distinguish between a large number of speakers. Under adverse conditions, such as when high noise levels are present or when the transmission channel deforms the speech, the performance is often less than satisfying. This project investigated the performance of a popular speaker recognition system, that use Gaussian mixture models, on speech transmitted over a high frequency channel. Initial experiments demonstrated very unsatisfactory results for the base line system. We investigated a number of robust techniques. We implemented and applied some of them in an attempt to improve the performance of the speaker recognition systems. The techniques we tested showed only slight improvements. We also investigates the effects of a high frequency channel and single sideband modulation on the speech features of speech processing systems. The effects that can deform the features, and therefore reduce the performance of speech systems, were identified. One of the effects that can greatly affect the performance of a speech processing system is noise. We investigated some speech enhancement techniques and as a result we developed a new statistical based speech enhancement technique that employs hidden Markov models to represent the clean speech process.AFRIKAANSE OPSOMMING: Sprekerherkenning-stelsels het 'n punt bereik waar nabyaan perfekte resultate verwag kan word onder ideale kondisies, selfs al moet die stelsel tussen 'n groot aantal sprekers onderskei. Wanneer nie-ideale kondisies, soos byvoorbeeld hoë ruisvlakke of 'n transmissie kanaal wat die spraak vervorm, teenwoordig is, is die resultate gewoonlik nie bevredigend nie. Die projek ondersoek die werksverrigting van 'n gewilde sprekerherkenning-stelsel, wat gebruik maak van Gaussiese mengselmodelle, op spraak wat oor 'n hoë frekwensie transmissie kanaal gestuur is. Aanvanklike eksperimente wat gebruik maak van 'n basiese stelsel het nie goeie resultate opgelewer nie. Ons het 'n aantal robuuste tegnieke ondersoek en 'n paar van hulle geïmplementeer en getoets in 'n poging om die resultate van die sprekerherkenning-stelsel te verbeter. Die tegnieke wat ons getoets het, het net geringe verbetering getoon. Die studie het ook die effekte wat die hoë-frekwensie kanaal en enkel-syband modulasie op spraak kenmerkvektore, ondersoek. Die effekte wat die spraak kenmerkvektore kan vervorm en dus die werkverrigting van spraak stelsels kan verlaag, is geïdentifiseer. Een van die effekte wat 'n groot invloed op die werkverrigting van spraakstelsels het, is ruis. Ons het spraak verbeterings metodes ondersoek en dit het gelei tot die ontwikkeling van 'n statisties gebaseerde spraak verbeteringstegniek wat gebruik maak van verskuilde Markov modelle om die skoon spraakproses voor te stel

    Robust text independent closed set speaker identification systems and their evaluation

    Get PDF
    PhD ThesisThis thesis focuses upon text independent closed set speaker identi cation. The contributions relate to evaluation studies in the presence of various types of noise and handset e ects. Extensive evaluations are performed on four databases. The rst contribution is in the context of the use of the Gaussian Mixture Model-Universal Background Model (GMM-UBM) with original speech recordings from only the TIMIT database. Four main simulations for Speaker Identi cation Accuracy (SIA) are presented including di erent fusion strategies: Late fusion (score based), early fusion (feature based) and early-late fusion (combination of feature and score based), late fusion using concatenated static and dynamic features (features with temporal derivatives such as rst order derivative delta and second order derivative delta-delta features, namely acceleration features), and nally fusion of statistically independent normalized scores. The second contribution is again based on the GMM-UBM approach. Comprehensive evaluations of the e ect of Additive White Gaussian Noise (AWGN), and Non-Stationary Noise (NSN) (with and without a G.712 type handset) upon identi cation performance are undertaken. In particular, three NSN types with varying Signal to Noise Ratios (SNRs) were tested corresponding to: street tra c, a bus interior and a crowded talking environment. The performance evaluation also considered the e ect of late fusion techniques based on score fusion, namely mean, maximum, and linear weighted sum fusion. The databases employed were: TIMIT, SITW, and NIST 2008; and 120 speakers were selected from each database to yield 3,600 speech utterances. The third contribution is based on the use of the I-vector, four combinations of I-vectors with 100 and 200 dimensions were employed. Then, various fusion techniques using maximum, mean, weighted sum and cumulative fusion with the same I-vector dimension were used to improve the SIA. Similarly, both interleaving and concatenated I-vector fusion were exploited to produce 200 and 400 I-vector dimensions. The system was evaluated with four di erent databases using 120 speakers from each database. TIMIT, SITW and NIST 2008 databases were evaluated for various types of NSN namely, street-tra c NSN, bus-interior NSN and crowd talking NSN; and the G.712 type handset at 16 kHz was also applied. As recommendations from the study in terms of the GMM-UBM approach, mean fusion is found to yield overall best performance in terms of the SIA with noisy speech, whereas linear weighted sum fusion is overall best for original database recordings. However, in the I-vector approach the best SIA was obtained from the weighted sum and the concatenated fusion.Ministry of Higher Education and Scienti c Research (MoHESR), and the Iraqi Cultural Attach e, Al-Mustansiriya University, Al-Mustansiriya University College of Engineering in Iraq for supporting my PhD scholarship

    Audio processing on constrained devices

    Get PDF
    This thesis discusses the future of smart business applications on mobile phones and the integration of voice interface across several business applications. It proposes a framework that provides speech processing support for business applications on mobile phones. The framework uses Gaussian Mixture Models (GMM) for low-enrollment speaker recognition and limited vocabulary speech recognition. Algorithms are presented for pre-processing of audio signals into different categories and for start and end point detection. A method is proposed for speech processing that uses Mel Frequency Cepstral Coeffcients (MFCC) as primary feature for extraction. In addition, optimization schemes are developed to improve performance, and overcome constraints of a mobile phone. Experimental results are presented for some prototype applications that evaluate the performance of computationally expensive algorithms on constrained hardware. The thesis concludes by discussing the scope for improvement for the work done in this thesis and future directions in which this work could possibly be extended

    Development of machine learning based speaker recognition system

    Get PDF
    In this thesis, we describe a biometric authentication system that is capable of recognizing its users??? voice using advanced machine learning and digital signal processing tools. The proposed system can both validate a person???s identity (i.e. verification) and recognize it from a larger known group of people (i.e. identification). We designed the entire speaker recognition system to be integrated into the Siebel Center???s infrastructure, and named it ???Biometric Authentication System for the Siebel Center (BASS)???. The main idea is to extract discriminative characteristics of an individual???s voiceprint, and employ them to train classifiers using binary classification. We formed the training data set by recording 11 speakers??? voices in a laboratory environment. The majority of the speakers were from different nations, with different language backgrounds and therefore various accents. They were considered to be a subset of the Siebel Center community. We asked them to speak 13 words including numeric digits (0-9) and proper nouns, and used triplet combinations of these words as passwords. We chose Mel-Frequency Cepstral Coefficients to represent the voice signals for forming frame-based feature vectors. With these we trained Support Vector Machine and Artificial Neural Network classifiers using ???One vs. all??? strategy. We tested our recognition models with unseen voice records from different speakers and found them very successful based on different criteria such as equal error rate, precision and recall values. In the scope of this work, we also assembled the hardware through which the software, including the algorithm and developed models, could operate. The hardware consists of several parts such as an infrared sensor that is used to sense the presence of users, a PIC microcontroller to communicate with the software and an LCD screen to display the passwords, etc. Based on the decision obtained from the software, BASS is also capable of opening the office door, where it is built to function

    Speaker characterization using adult and children’s speech

    Get PDF
    Speech signals contain important information about a speaker, such as age, gender, language, accent, and emotional/psychological state. Automatic recognition of these types of characteristics has a wide range of commercial, medical and forensic applications such as interactive voice response systems, service customization, natural human-machine interaction, recognizing the type of pathology of speakers, and directing the forensic investigation process. Many such applications depend on reliable systems using short speech segments without regard to the spoken text (text-independent). All these applications are also applicable using children’s speech. This research aims to develop accurate methods and tools to identify different characteristics of the speakers. Our experiments cover speaker recognition, gender recognition, age-group classification, and accent identification. However, similar approaches and techniques can be applied to identify other characteristics such as emotional/psychological state. The main focus of this research is on detecting these characteristics from children’s speech, which is previously reported as a more challenging subject compared to adult. Furthermore, the impact of different frequency bands on the performances of several recognition systems is studied, and the performance obtained using children’s speech is compared with the corresponding results from experiments using adults’ speech. Speaker characterization is performed by fitting a probability density function to acoustic features extracted from the speech signals. Since the distribution of acoustic features is complex, Gaussian mixture models (GMM) are applied. Due to lack of data, parametric model adaptation methods have been applied to adapt the universal background model (UBM) to the char acteristics of utterances. An effective approach involves adapting the UBM to speech signals using the Maximum-A-Posteriori (MAP) scheme. Then, the Gaussian means of the adapted GMM are concatenated to form a Gaussian mean super-vector for a given utterance. Finally, a classification or regression algorithm is used to identify the speaker characteristics. While effective, Gaussian mean super-vectors are of a high dimensionality resulting in high computational cost and difficulty in obtaining a robust model in the context of limited data. In the field of speaker recognition, recent advances using the i-vector framework have increased the classification accuracy. This framework, which provides a compact representation of an utterance in the form of a low dimensional feature vector, applies a simple factor analysis on GMM means

    An application of an auditory periphery model in speaker identification

    Get PDF
    The number of applications of automatic Speaker Identification (SID) is growing due to the advanced technologies for secure access and authentication in services and devices. In 2016, in a study, the Cascade of Asymmetric Resonators with Fast Acting Compression (CAR FAC) cochlear model achieved the best performance among seven recent cochlear models to fit a set of human auditory physiological data. Motivated by the performance of the CAR-FAC, I apply this cochlear model in an SID task for the first time to produce a similar performance to a human auditory system. This thesis investigates the potential of the CAR-FAC model in an SID task. I investigate the capability of the CAR-FAC in text-dependent and text-independent SID tasks. This thesis also investigates contributions of different parameters, nonlinearities, and stages of the CAR-FAC that enhance SID accuracy. The performance of the CAR-FAC is compared with another recent cochlear model called the Auditory Nerve (AN) model. In addition, three FFT-based auditory features – Mel frequency Cepstral Coefficient (MFCC), Frequency Domain Linear Prediction (FDLP), and Gammatone Frequency Cepstral Coefficient (GFCC), are also included to compare their performance with cochlear features. This comparison allows me to investigate a better front-end for a noise-robust SID system. Three different statistical classifiers: a Gaussian Mixture Model with Universal Background Model (GMM-UBM), a Support Vector Machine (SVM), and an I-vector were used to evaluate the performance. These statistical classifiers allow me to investigate nonlinearities in the cochlear front-ends. The performance is evaluated under clean and noisy conditions for a wide range of noise levels. Techniques to improve the performance of a cochlear algorithm are also investigated in this thesis. It was found that the application of a cube root and DCT on cochlear output enhances the SID accuracy substantially

    Computer Models for Musical Instrument Identification

    Get PDF
    PhDA particular aspect in the perception of sound is concerned with what is commonly termed as texture or timbre. From a perceptual perspective, timbre is what allows us to distinguish sounds that have similar pitch and loudness. Indeed most people are able to discern a piano tone from a violin tone or able to distinguish different voices or singers. This thesis deals with timbre modelling. Specifically, the formant theory of timbre is the main theme throughout. This theory states that acoustic musical instrument sounds can be characterised by their formant structures. Following this principle, the central point of our approach is to propose a computer implementation for building musical instrument identification and classification systems. Although the main thrust of this thesis is to propose a coherent and unified approach to the musical instrument identification problem, it is oriented towards the development of algorithms that can be used in Music Information Retrieval (MIR) frameworks. Drawing on research in speech processing, a complete supervised system taking into account both physical and perceptual aspects of timbre is described. The approach is composed of three distinct processing layers. Parametric models that allow us to represent signals through mid-level physical and perceptual representations are considered. Next, the use of the Line Spectrum Frequencies as spectral envelope and formant descriptors is emphasised. Finally, the use of generative and discriminative techniques for building instrument and database models is investigated. Our system is evaluated under realistic recording conditions using databases of isolated notes and melodic phrases
    • …
    corecore