1,327 research outputs found

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters

    Efficient resource allocation and call admission control in high capacity wireless networks

    Get PDF
    Resource Allocation (RA) and Call Admission Control (CAC) in wireless networks are processes that control the allocation of the limited radio resources to mobile stations (MS) in order to maximize the utilization efficiency of radio resources and guarantee the Quality of Service (QoS) requirements of mobile users. In this dissertation, several distributed, adaptive and efficient RA/CAC schemes are proposed and analyzed, in order to improve the system utilization while maintaining the required QoS. Since the most salient feature of the mobile wireless network is that users are moving, a Mobility Based Channel Reservation (MBCR) scheme is proposed which takes the user mobility into consideration. The MBCR scheme is further developed into PMBBR scheme by using the user location information in the reservation making process. Through traffic composition analysis, the commonly used assumption is challenged in this dissertation, and a New Call Bounding (NCB) scheme, which uses the number of channels that are currently occupied by new calls as a decision variable for the CAC, is proposed. This dissertation also investigates the pricing as another dimension for RA/CAC. It is proven that for a given wireless network there exists a new call arrival rate which can maximize the total utility of users, while maintaining the required QoS. Based on this conclusion, an integrated pricing and CAC scheme is proposed to alleviate the system congestion

    Handover Management in Highly Dense Femtocellular Networks

    Full text link
    For dense femtocells, intelligent integrated femtocell/macrocell network architecture, a neighbor cell list with a minimum number of femtocells, effective call admission control (CAC), and handover processes with proper signaling are the open research issues. An appropriate traffic model for the integrated femtocell/macrocell network is also not yet developed. In this paper, we present the major issue of mobility management for the integrated femtocell/macrocell network. We propose a novel algorithm to create a neighbor cell list with a minimum, but appropriate, number of cells for handover. We also propose detailed handover procedures and a novel traffic model for the integrated femtocell/macrocell network. The proposed CAC effectively handles various calls. The numerical and simulation results show the importance of the integrated femtocell/macrocell network and the performance improvement of the proposed schemes. Our proposed schemes for dense femtocells will be very effective for those in research and industry to implement

    Improved Spectrum Mobility using Virtual Reservation in Collaborative Cognitive Radio Networks

    Full text link
    Cognitive radio technology would enable a set of secondary users (SU) to opportunistically use the spectrum licensed to a primary user (PU). On the appearance of this PU on a specific frequency band, any SU occupying this band should free it for PUs. Typically, SUs may collaborate to reduce the impact of cognitive users on the primary network and to improve the performance of the SUs. In this paper, we propose and analyze the performance of virtual reservation in collaborative cognitive networks. Virtual reservation is a novel link maintenance strategy that aims to maximize the throughput of the cognitive network through full spectrum utilization. Our performance evaluation shows significant improvements not only in the SUs blocking and forced termination probabilities but also in the throughput of cognitive users.Comment: 7 pages, 10 figures, IEEE ISCC 201

    Admission Control for Multiuser Communication Systems

    Get PDF
    During the last few years, broadband wireless communication has experienced very rapid growth in telecommunications industry. Hence, the performance analysis of such systems is one of the most important topics. However, accurate systems’ analysis requires first good modeling of the network traffic. Moreover, broadband wireless communication should achieve certain performance in order to satisfy the customers as well as the operators. Therefore, some call admission control techniques should be integrated with wireless networks in order to deny new users/services if accepting them will lead to degrade the network performance to less than the allowed threshold. This thesis mainly discusses the above two issues which can be summarized as follows. First issue is the traffic modeling of wireless communication. The performance analysis is discussed in terms of the quality of services (QoS) and also the grade of services (GoS). Different scenarios have been studies such as enhancing the GoS of handover users. The second issue is the admission control algorithms. Admission Control is part of radio resource management. The performance of admission control is affected by channel characteristics such as fading and interference. Hence, some wireless channel characteristics are introduced briefly. Seven different channel allocation schemes have been discussed and analyzed. Moreover, different admission control algorithms are analyzed such as power-based and multi-classes fuzzy-logic based. Some simulations analyses are given as well to show the system performance of different algorithms and scenarios.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Modelling and performance evaluation of wireless and mobile communication systems in heterogeneous environments

    Get PDF
    It is widely expected that next generation wireless communication systems will be heterogeneous, integrating a wide variety of wireless access networks. Of particular interest recently is the integration of cellular networks (GSM, GPRS, UMTS, EDGE and LTE) and wireless local area networks (WLANs) to provide complementary features in terms of coverage, capacity and mobility support. These different networks will work together using vertical handover techniques and hence understanding how well these mechanisms perform is a significant issue. In this thesis, these networks are modelled to yield performance results such as mean queue lengths and blocking probabilities over a range of different conditions. The results are then analysed using network constraints to yield operational graphs based on handover probabilities to different networks. Firstly, individual networks with horizontal handover are analysed using performability techniques. The thesis moves on to look at vertical handovers between cellular networks using pure performance models. Then the integration of cellular networks and WLAN is considered. While analysing these results it became clear that the common models that were being used were subjected to handover hysteresis resulting from feedback loops in the model. A new analytical model was developed which addressed this issue but was shown to be problematic in developing state probabilities for more complicated scenarios. Guard channels analysis, which is normally used to give priority to handover traffic in mobile networks, was employed as a practical solution to the observed handover hysteresis. Overall, using different analytical techniques as well as simulation, the results of this work form an important part in the design and development of future mobile systems
    • …
    corecore