6,081 research outputs found

    Effects of solute content on grain refinement in an isothermal melt

    Get PDF
    This is the port-print version of the article. The official published version can be obtained from the link below - Copyright @ 2011 Acta Materialia Inc. Published by Elsevier LtdIt is well accepted in the literature that for effective grain refinement some solute is required in the melt to restrict the growth of the solid even if potent nucleating particles with a favourable physical nature are present. In this paper we investigate the effect of the solute on grain initiation in an isothermal melt, and an analytical model is developed to account for the effect of solute elements on grain size. This study revealed that the solute elements in the liquid ahead of the growing crystals reduce the growth velocity of the nucleated crystals and increase the maximum undercooling achievable before recalescence. This allows more particles to be active in nucleation and, consequently, increases the number density of active particles, giving rise to a finer grain size. The analytical model shows that the final grain size can be related to the maximum undercooling, average growth velocity and solid fraction at the moment of recalescence. Further analysis using the free growth model and experimental data in the literature revealed that for a given alloy system solidified under similar conditions the grain size can be empirically related to 1/Q (Q is the growth restriction factor) to a power of 1/3, which is considerably different from the empirical linear relationship in the literature. It is demonstrated that the 1/3 power law can describe the experimental data more accurately than a linear relationship.The EPSRC is gratefully acknowledged for providing financial support under Grant EP/H026177/1

    An epitaxial model for heterogeneous nucleation on potent substrates

    Get PDF
    © The Minerals, Metals & Materials Society and ASM International 2012In this article, we present an epitaxial model for heterogeneous nucleation on potent substrates. It is proposed that heterogeneous nucleation of the solid phase (S) on a potent substrate (N) occurs by epitaxial growth of a pseudomorphic solid (PS) layer on the substrate surface under a critical undercooling (ΔT ). The PS layer with a coherent PS/N interface mimics the atomic arrangement of the substrate, giving rise to a linear increase of misfit strain energy with layer thickness. At a critical thickness (h ), elastic strain energy reaches a critical level, at which point, misfit dislocations are created to release the elastic strain energy in the PS layer. This converts the strained PS layer to a strainless solid (S), and changes the initial coherent PS/N interface into a semicoherent S/N interface. Beyond this critical thickness, further growth will be strainless, and solidification enters the growth stage. It is shown analytically that the lattice misfit (f) between the solid and the substrate has a strong influence on both h and ΔT ; h decreases; and ΔT increases with increasing lattice misfit. This epitaxial nucleation model will be used to explain qualitatively the generally accepted experimental findings on grain refinement in the literature and to analyze the general approaches to effective grain refinement.EPSRC Centre for Innovative Manufacturing in Liquid Metal Engineerin

    Temperature effects on material characteristics

    Get PDF
    Some of the physical properties of the main elements of interest in high temperature technology are reviewed. Some general trends emerge when these properties are viewed as a function of melting point, but there are a few notable exceptions. Titanium, zirconium, niobium and tantalum all have disappointingly low moduli; chromium is excellent in many ways, but has a limited ductility at lower temperatures; molybdenum oxidises catastrophically above about 700° C, and niobium suffers from severe oxygen embrittlement. Beryllium and carbon (in the graphitic form) both stand out as exceptional materials, both have very low densities, beryllium a very high modulus but an unfortunately low ductility, while graphite has a relatively low strength at the lower temperatures, although at temperatures of 2000° C and above it emerges as a quite exceptional (and probably as the ultimate) high temperature material. Some of the fundamental factors involved in high temperature material development are examined, in the light, particularly, of past progress with the nickel alloys. If a similar progress can be achieved with other base elements then a considerable margin still remains to be exploited. Protection from oxidation at high temperatures is evidently a factor of major concern, not only with metals, but with graphite also. Successful coatings are therefore of high importance and the questions they raise, such as bonding, differential thermal expansion, and so on, represent aspects of an even wider class covered by the term “composite structures". Such structures appear to offer the only serious solution to many high temperature requirements, and their design, construction and utilization has created a whole series of new exercises in materials assessment. Matters have become so complex, that a very radical and fundamental reassessment is required if we are to change, in any very significant way, the wasteful and ad hoc methods which characterise so much of present-day materials engineering

    Scaling Behaviour and Complexity of the Portevin-Le Chatelier Effect

    Full text link
    The plastic deformation of dilute alloys is often accompanied by plastic instabilities due to dynamic strain aging and dislocation interaction. The repeated breakaway of dislocations from and their recapture by solute atoms leads to stress serrations and localized strain in the strain controlled tensile tests, known as the Portevin-Le Chatelier (PLC) effect. In this present work, we analyse the stress time series data of the observed PLC effect in the constant strain rate tensile tests on Al-2.5%Mg alloy for a wide range of strain rates at room temperature. The scaling behaviour of the PLC effect was studied using two complementary scaling analysis methods: the finite variance scaling method and the diffusion entropy analysis. From these analyses we could establish that in the entire span of strain rates, PLC effect showed Levy walk property. Moreover, the multiscale entropy analysis is carried out on the stress time series data observed during the PLC effect to quantify the complexity of the distinct spatiotemporal dynamical regimes. It is shown that for the static type C band, the entropy is very low for all the scales compared to the hopping type B and the propagating type A bands. The results are interpreted considering the time and length scales relevant to the effect.Comment: 35 pages, 6 figure

    The NBS: Processing/Microstructure/Property Relationships in 2024 Aluminum Alloy Plates

    Get PDF
    As received plates of 2024 aluminum alloy were examined. Topics covered include: solidification segregation studies; microsegregation and macrosegregation in laboratory and commercially cast ingots; C-curves and nondestructive evaluation; time-temperature precipitation diagrams and the relationships between mechanical properties and NDE measurements; transmission electron microscopy studies; the relationship between microstructure and properties; ultrasonic characterization; eddy-current conductivity characterization; the study of aging process by means of dynamic eddy current measurements; and Heat flow-property predictions, property degradations due to improve quench from the solution heat treatment temperature

    Kinetics of natural aging in Al-Mg-Si alloys studied by positron annihilation lifetime spectroscopy

    Full text link
    The process of natural aging in pure ternary Al-Mg-Si alloys was studied by positron annihilation lifetime spectroscopy in real time in order to clarify the sequence and kinetics of clustering and precipitation. It was found that natural aging takes place in at least five stages in these alloys, four of which were directly observed. This is interpreted as the result of complex interactions between vacancies and solute atoms or clusters. One of the early stages of positron lifetime evolution coincides with a clustering process observed by differential scanning calorimetry (DSC) and involves the formation of a positron trap with \sim 0.200 ns lifetime. In later stages, a positron trap with a higher lifetime develops in coincidence with the DSC signal of a second clustering reaction. Mg governs both the kinetics and the lifetime change in this stage. Within the first 10 min after quenching, a period of nearly constant positron lifetime was found for those Mg-rich alloys that later show an insufficient hardness response to artificial aging, the so-called "negative effect." The various processes observed could be described by two effective activation energies that were found by varying the aging temperature from 10 to 37\degree C.Comment: arXiv admin note: same as v2, to correct mistaken v

    Development and characterization of Powder Metallurgy (PM) 2XXX series Al alloy products and Metal Matrix Composite (MMC) 2XXX Al/SiC materials for high temperature aircraft structural applications

    Get PDF
    The results of a series of material studies performed by the Lockheed Aeronautical Systems Company over the time period from 1980 to 1991 are discussed. The technical objective of these evaluations was to develop and characterize advanced aluminum alloy materials with temperature capabilities extending to 350 F. An overview is given of the first five alloy development efforts under this contract. Prior work conducted during the first five modifications of the alloy development program are listed. Recent developments based on the addition of high Zr levels to an optimum Al-Cu-Mg alloy composition by powder metallurgy processing are discussed. Both reinforced and SiC or B4C ceramic reinforced alloys were explored to achieve specific target goals for high temperature aluminum alloy applications

    Structural and Chemical Orders in Ni64.5Zr35.5 Metallic Glass by Molecular Dynamics Simulation

    Get PDF
    The atomic structure of Ni64.5Zr35.5 metallic glass has been investigated by molecular dynamics (MD) simulations. The calculated structure factors from the MD glassy sample at room temperature agree well with the X-ray diffraction (XRD) and neutron diffraction (ND) experimental data. Using the pairwise cluster alignment and clique analysis methods, we show that there are three types dominant short-range order (SRO) motifs around Ni atoms in the glass sample of Ni64.5Zr35.5, i.e., Mixed-Icosahedron(ICO)-Cube, Twined-Cube and icosahedron-like clusters. Furthermore, chemical order and medium-range order (MRO) analysis show that the Mixed-ICO-Cube and Twined-Cube clusters exhibit the characteristics of the crystalline B2 phase. Our simulation results suggest that the weak glass-forming ability (GFA) of Ni64.5Zr35.5 can be attributed to the competition between the glass forming ICO SRO and the crystalline Mixed-ICO-Cube and Twined-Cube motifs
    corecore