3 research outputs found

    Determining the Haptic Feedback Position for Optimizing the Targeting Performance on Ultrasonic Tactile Displays

    Get PDF
    International audienceAlongside questions of how to create haptic effects on displays via alternative hardware, recent work has explored rendering options with respect to haptic effects, i.e. when and where to provide haptic feedback. In particular, recent work by Zhang and Harrison for electrostatic haptic feedback noted that the optimal technique for haptic feedback during interaction is the Fill technique, where haptic effects are rendered at all times when a user's finger is within the bounds of the target. In this paper, we explore whether this result generalizes to an alternative haptic rendering technology that uses ultrasonic vibrations to create haptic sensations, a technique called the " Squeeze Film Effect ". In contrast to prior work, our results indicate that positioning the haptic feedback as a discrete linear stimulus centred on the target provides an optimal trade-off between speed, accuracy, and user preference. We highlight the implications of this work to the generalizability of haptic feedback: Haptic feedback can improve time, errors, and user satisfaction during interaction, but only if the correct form of feedback is used for the specific haptic effect generated by the hardware

    Neural Activations Associated With Friction Stimulation on Touch-Screen Devices

    Get PDF
    Tactile sensation largely influences human perception, for instance when using a mobile device or a touch screen. Active touch, which involves tactile and proprioceptive sensing under the control of movement, is the dominant tactile exploration mechanism compared to passive touch (being touched). This paper investigates the role of friction stimulation objectively and quantitatively in active touch tasks, in a real human-computer interaction on a touch-screen device. In this study, 24 participants completed an active touch task involved stroking the virtual strings of a guitar on a touch-screen device while recording the electroencephalography (EEG) signal. Statistically significant differences in beta and gamma oscillations in the middle frontal and parietal areas at the late period of the active touch task are found. Furthermore, stronger beta event-related desynchronization (ERD) and rebound in the presence of friction stimulation in the contralateral parietal area are observed. However, in the ipsilateral parietal area, there is a difference in beta oscillation only at the late period of the motor task. As for implicit emotion communication, a significant increase in emotional responses for valence, arousal, dominance, and satisfaction is observed when the friction stimulation is applied. It is argued that the friction stimulation felt by the participants' fingertip in a touch-screen device further induces cognitive processing compared to the case when no friction stimulation is applied. This study provides objective and quantitative evidence that friction stimulation is able to affect the bottom-up sensation and cognitive processing

    Effect of Electrostatic Tactile Feedback on Accuracy and Efficiency of Pan Gestures on Touch Screens

    No full text
    corecore