898 research outputs found

    Deep Burst Denoising

    Full text link
    Noise is an inherent issue of low-light image capture, one which is exacerbated on mobile devices due to their narrow apertures and small sensors. One strategy for mitigating noise in a low-light situation is to increase the shutter time of the camera, thus allowing each photosite to integrate more light and decrease noise variance. However, there are two downsides of long exposures: (a) bright regions can exceed the sensor range, and (b) camera and scene motion will result in blurred images. Another way of gathering more light is to capture multiple short (thus noisy) frames in a "burst" and intelligently integrate the content, thus avoiding the above downsides. In this paper, we use the burst-capture strategy and implement the intelligent integration via a recurrent fully convolutional deep neural net (CNN). We build our novel, multiframe architecture to be a simple addition to any single frame denoising model, and design to handle an arbitrary number of noisy input frames. We show that it achieves state of the art denoising results on our burst dataset, improving on the best published multi-frame techniques, such as VBM4D and FlexISP. Finally, we explore other applications of image enhancement by integrating content from multiple frames and demonstrate that our DNN architecture generalizes well to image super-resolution

    Learning how to be robust: Deep polynomial regression

    Get PDF
    Polynomial regression is a recurrent problem with a large number of applications. In computer vision it often appears in motion analysis. Whatever the application, standard methods for regression of polynomial models tend to deliver biased results when the input data is heavily contaminated by outliers. Moreover, the problem is even harder when outliers have strong structure. Departing from problem-tailored heuristics for robust estimation of parametric models, we explore deep convolutional neural networks. Our work aims to find a generic approach for training deep regression models without the explicit need of supervised annotation. We bypass the need for a tailored loss function on the regression parameters by attaching to our model a differentiable hard-wired decoder corresponding to the polynomial operation at hand. We demonstrate the value of our findings by comparing with standard robust regression methods. Furthermore, we demonstrate how to use such models for a real computer vision problem, i.e., video stabilization. The qualitative and quantitative experiments show that neural networks are able to learn robustness for general polynomial regression, with results that well overpass scores of traditional robust estimation methods.Comment: 18 pages, conferenc

    Motion denoising with application to time-lapse photography

    Get PDF
    Motions can occur over both short and long time scales. We introduce motion denoising, which treats short-term changes as noise, long-term changes as signal, and re-renders a video to reveal the underlying long-term events. We demonstrate motion denoising for time-lapse videos. One of the characteristics of traditional time-lapse imagery is stylized jerkiness, where short-term changes in the scene appear as small and annoying jitters in the video, often obfuscating the underlying temporal events of interest. We apply motion denoising for resynthesizing time-lapse videos showing the long-term evolution of a scene with jerky short-term changes removed. We show that existing filtering approaches are often incapable of achieving this task, and present a novel computational approach to denoise motion without explicit motion analysis. We demonstrate promising experimental results on a set of challenging time-lapse sequences.United States. National Geospatial-Intelligence Agency (NEGI-1582-04-0004)Shell ResearchUnited States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant N00014-06-1-0734)National Science Foundation (U.S.) (0964004

    Real-time embedded video denoiser prototype

    Get PDF
    International audienceLow light or other poor visibility conditions often generate noise on any vision system. However, video denoising requires a lot of computational effort and most of the state-of-the-art algorithms cannot be run in real-time at camera framerate. Noisy video is thus a major issue especially for embedded systems that provide low computational power. This article presents a new real-time video denoising algorithm for embedded platforms called RTE-VD [1]. We first compare its denoising capabilities with other online and offline algorithms. We show that RTE-VD can achieve real-time performance (25 frames per second) for qHD video (960x540 pixels) on embedded CPUs with an output image quality comparable to state-of-the-art algorithms. In order to reach real-time denoising, we applied several high-level transforms and optimizations. We study the relation between computation time and power consumption on several embedded CPUs and show that it is possible to determine find out frequency and core configurations in order to minimize either the computation time or the energy. Finally, we introduce VIRTANS our embedded real-time video denoiser based on RTE-VD
    corecore