352 research outputs found

    Adaptive Energy Storage System Control for Microgrid Stability Enhancement

    Get PDF
    Microgrids are local power systems of different sizes located inside the distribution systems. Each microgrid contains a group of interconnected loads and distributed energy resources that acts as a single controllable entity with respect to the grid. Their islanding operation capabilities during emergencies improve the resiliency and reliability of the electric energy supply. Due to its low kinetic energy storage capacity, maintaining microgrid stability is challenging under system contingencies and unpredictable power generation from renewable resources. This dissertation highlights the potential benefits of flexibly utilizing the battery energy storage systems to enhance the stability of microgrids. The main contribution of this research consists in the development of a storage converter controller with an additional stability margin that enables it to improve microgrid frequency and voltage regulation as well as its induction motor post-fault speed recovery. This new autonomous control technique is implemented by adaptively setting the converter controller parameters based on its estimated phase-locked loop frequency deviation and terminal voltage magnitude measurement. This work also assists in the microgrid design process by determining the normalized minimum storage converter sizing under a wide range of microgrid motor inertia, loading and fault clearing time with both symmetrical and asymmetrical fault types. This study evaluates the expandability of the proposed control methodologies under an unbalanced meshed microgrid with fault-induced feeder switching and multiple contingencies in addition to random power output from renewable generators. The favorable results demonstrate the robust storage converter controller performance under a dynamic changing microgrid environment

    Modeling and Analysis of Cal Poly Microgrid

    Get PDF
    Microgrids—miniature versions of the electrical grid are becoming increasingly more popular as advancements in technologies, renewable energy mandates, and decreased costs drive communities to adopt them. The modern microgrid has capabilities of generating, distributing, and regulating the flow of electricity, capable of operating in both grid-connected and islanded (disconnected) conditions. This paper utilizes ETAP software in the analysis, simulation, and development of the Cal Poly microgrid. Additionally, an ETAP power system protection tutorial is created to aid students entering the power industry. Microprocessor-based relays are heavily utilized in both the ETAP model and hardware implementation of the system. Case studies in this project investigate electric power system load flow, short circuit, protection coordination, and transient stability analysis of the Cal Poly microgrid

    Design And Implementation Of Co-Operative Control Strategy For Hybrid AC/DC Microgrids

    Get PDF
    This thesis is mainly divided in two major sections: 1) Modelling and control of AC microgrid, DC microgrid, Hybrid AC/DC microgrid using distributed co-operative control, and 2) Development of a four bus laboratory prototype of an AC microgrid system. At first, a distributed cooperative control (DCC) for a DC microgrid considering the state-of-charge (SoC) of the batteries in a typical plug-in-electric-vehicle (PEV) is developed. In DC microgrids, this methodology is developed to assist the load sharing amongst the distributed generation units (DGs), according to their ratings with improved voltage regulation. Subsequently, a DCC based control algorithm for AC microgrid is also investigated to improve the performance of AC microgrid in terms of power sharing among the DGs, voltage regulation and frequency deviation. The results validate the advantages of the proposed methodology as compared to traditional droop control of AC microgrid. The DCC-based control methodology for AC microgrid and DC microgrid are further expanded to develop a DCC-based power management algorithm for hybrid AC/DC microgrid. The developed algorithm for hybrid microgrid controls the power flow through the interfacing converter (IC) between the AC and DC microgrids. This will facilitate the power sharing between the DGs according to their power ratings. Moreover, it enables the fixed scheduled power delivery at different operating conditions, while maintaining good voltage regulation and improved frequency profile. The second section provides a detailed explanation and step-by-step design and development of an AC/DC microgrid testbed. Controllers for the three-phase inverters are designed and tested on different generation units along with their corresponding inductor-capacitor-inductor (LCL) filters to eliminate the switching frequency harmonics. Electric power distribution line models are developed to form the microgrid network topology. Voltage and current sensors are placed in the proper positions to achieve a full visibility over the microgrid. A running average filter (RAF) based enhanced phase-locked-loop (EPLL) is designed and implemented to extract frequency and phase angle information. A PLL-based synchronizing scheme is also developed to synchronize the DGs to the microgrid. The developed laboratory prototype runs on dSpace platform for real time data acquisition, communication and controller implementation

    Power Management Strategies for a Wind Energy Source in an Isolated Microgrid and Grid Connected System

    Get PDF
    This thesis focuses on the development of power management control strategies for a direct drive permanent magnet synchronous generator (PMSG) based variable speed wind turbine (VSWT). Two modes of operation have been considered: (1) isolated/islanded mode, and (2) grid-connected mode. In the isolated/islanded mode, the system requires additional energy sources and sinks to counterbalance the intermittent nature of the wind. Thus, battery energy storage and photovoltaic (PV) systems have been integrated with the wind turbine to form a microgrid with hybrid energy sources. For the wind/battery hybrid system, several energy management and control issues have been addressed, such as DC link voltage stability, imbalanced power flow, and constraints of the battery state of charge (SOC). To ensure the integrity of the microgrid, and to increase its flexibility, dump loads and an emergency back-up AC source (can be a diesel generator set) have been used to protect the system against the excessive power production from the wind and PV systems, as well as the intermittent nature of wind source. A coordinated control strategy is proposed for the dump loads and back up AC source. An alternative control strategy is also proposed for a hybrid wind/battery system by eliminating the dedicated battery converter and the dump loads. To protect the battery against overcharging, an integrated control strategy is proposed. In addition, the dual vector voltage control (DVVC) is also developed to tackle the issues associated with unbalanced AC loads. To improve the performance of a DC microgrid consisting wind, battery, and PV, a distributed control strategy using DC link voltage (DLV) based control law is developed. This strategy provides simpler structure, less frequent mode transitions, and effective coordination among different sources without relying on real-time communication. In a grid-connected mode, this DC microgrid is connected to the grid through a single inverter at the point of common coupling (PCC). The generated wind power is only treated as a source at the DC side for the study of both unbalanced and balanced voltage sag issues at a distribution grid network. The proposed strategy consists of: (i) a vector current control with a feed-forward of the negative-sequence voltage (VCCF) to compensate for the negative sequence currents; and (ii) a power compensation factor (PCF) control for the VCCF to maintain the balanced power flow between the system and the grid. A sliding mode control strategy has also been developed to enhance the overall system performance. Appropriate grid code has been considered in this case. All the developed control strategies have been validated via extensive computer simulation with realistic system parameters. Furthermore, to valid developed control strategies in a realistic environment in real-time, a microgrid has been constructed using physical components: a wind turbine simulator (WTS), power electronic converters, simulated grid, sensors, real-time controllers and protection devices. All the control strategies developed in this system have been validated experimentally on this facility. In conclusion, several power management strategies and real-time control issues have been investigated for direct drive permanent magnet synchronous generator (PMSG) based variable speed wind turbine system in an islanded and grid-connected mode. For the islanded mode, the focuses have been on microgrid control. While for the grid-connected mode, main consideration has been on the mitigation of voltage sags at the point of common coupling (PCC)

    Stability Analysis of Fully Power Converter-based Microgrids

    Get PDF
    Due to rising energy demand and climate crisis, distributed energy generation utilizing the renewable energy resource is constantly evolving. Generation near the electrical loads within a defined boundary forms a microgrid. It can be operated by connecting with utility-grid or as a stand-alone system. Solar and wind energy resources use a power-electronic converter to interface with the load or grid. The fast dynamics of the converter is very different from the inertial dynamics of the grid with large synchronous machines. Furthermore, low short-circuit capacity, more resistive network and unbalanced loading are few inherent characteristics concerning the operational reliability of the microgrid. This thesis aims to present the various issues with fully power converter-based microgrids in terms of stability and protection. High-power converters with LCL-filter are simulated under various operating conditions in typhoon real-time simulator. A relay function is used to detect the unstable operating points. High resistance-to-reactance ratio in the low-voltage line forms active-reactive power coupling, making the conventional droop control inaccurate. For a disturbance, droop control allows a steep voltage or frequency deviations which lead to unnecessary protection tripping. Use of virtual inertia control avoids the steep change in the system variables and preserves the stability. Parallel droop-based converters with non-identical parameters or output impedance induce circulating current or reactive power oscillations. Use of virtual impedance control minimizes the circulating current and enhances power-sharing. Phase-locked loop synchronized with a weak grid (high-impedance grid) is unstable on large-signal disturbances. Current-reference saturation limits the converter current for a three-phase balanced fault condition. For higher fault-impedance, the fault current is nearly equal to the load current, which possibly blinds the microgrid protection

    Improvement of Frequency Regulation in VSG-Based AC Microgrid via Adaptive Virtual Inertia

    Get PDF
    A virtual synchronous generator (VSG) control based on adaptive virtual inertia is proposed to improve dynamic frequency regulation of microgrid. When the system frequency deviates from the nominal steady-state value, the adaptive inertia control can exhibit a large inertia to slow the dynamic process and, thus, improve frequency nadir. And when the system frequency starts to return, a small inertia is shaped to accelerate system dynamics with a quick transient process. As a result, this flexible inertia property combines the merits of large inertia and small inertia, which contributes to the improvement of dynamic frequency response. The stability of the proposed algorithm is proved by Lyapunov stability theory, and the guidelines on the key control parameters are provided. Finally, both hardware-in-the-loop and experimental results demonstrate the effectiveness of the proposed control algorithm

    Real-Time Implementation of Islanded Microgrid for Remote Areas

    Get PDF
    Islanding is a condition in which a microgrid or a portion of power grid, consisting of distributed generation (DG) sources, converter, and load, gets disconnected from the utility grid. Under this condition the DG sources in a microgrid must switch to a voltage control mode, in order to provide constant voltage to local loads. In grid connected mode, the microgrid works as current controller and injects power to the main grid, depending on the power generation and local load with suitable market policies. Providing constant voltage at a stable frequency with proper synchronization amongst each DG in a microgrid is a challenge. The complexity of such grid requires careful study and analysis before actual implementation. These challenges of microgrid are addressed using real time OPAL-RT simulation technology. Thus the paper describes an islanded microgrid with master slave controller for power balance, voltage/frequency regulation, and synchronization. Based on an advanced real-time platform named Real-Time Laboratory (RT-LAB), the impacts of the micro sources, load, and converters in an islanded microgrid is studied in this paper. The effectiveness of the proposed controller is analyzed through experimental results under balanced/unbalanced nonlinear loads condition
    corecore