1,374 research outputs found

    Modeling virus pandemics in a globally connected world a challenge towards a mathematics for living systems

    Get PDF
    This editorial paper presents the papers published in a special issue devoted to the modeling and simulation of mutating virus pandemics in a globally connected world. The presentation is proposed in three parts. First, motivations and objectives are presented according to the idea that mathematical models should go beyond deterministic population dynamics by considering the multiscale, heterogeneous features of the complex system under consideration. Subsequently, the contents of the papers in this issue are presented referring to the aforementioned complexity features. Finally, a critical analysis of the overall contents of the issue is proposed, with the aim of providing a forward look to research perspectives.PostprintPeer reviewe

    Kinetic Theory and Swarming Tools to Modeling Complex Systems—Symmetry problems in the Science of Living Systems

    Get PDF
    This MPDI book comprises a number of selected contributions to a Special Issue devoted to the modeling and simulation of living systems based on developments in kinetic mathematical tools. The focus is on a fascinating research field which cannot be tackled by the approach of the so-called hard sciences—specifically mathematics—without the invention of new methods in view of a new mathematical theory. The contents proposed by eight contributions witness the growing interest of scientists this field. The first contribution is an editorial paper which presents the motivations for studying the mathematics and physics of living systems within the framework an interdisciplinary approach, where mathematics and physics interact with specific fields of the class of systems object of modeling and simulations. The different contributions refer to economy, collective learning, cell motion, vehicular traffic, crowd dynamics, and social swarms. The key problem towards modeling consists in capturing the complexity features of living systems. All articles refer to large systems of interaction living entities and follow, towards modeling, a common rationale which consists firstly in representing the system by a probability distribution over the microscopic state of the said entities, secondly, in deriving a general mathematical structure deemed to provide the conceptual basis for the derivation of models and, finally, in implementing the said structure by models of interactions at the microscopic scale. Therefore, the modeling approach transfers the dynamics at the low scale to collective behaviors. Interactions are modeled by theoretical tools of stochastic game theory. Overall, the interested reader will find, in the contents, a forward look comprising various research perspectives and issues, followed by hints on to tackle these

    AI in Medical Imaging Informatics: Current Challenges and Future Directions

    Get PDF
    This paper reviews state-of-the-art research solutions across the spectrum of medical imaging informatics, discusses clinical translation, and provides future directions for advancing clinical practice. More specifically, it summarizes advances in medical imaging acquisition technologies for different modalities, highlighting the necessity for efficient medical data management strategies in the context of AI in big healthcare data analytics. It then provides a synopsis of contemporary and emerging algorithmic methods for disease classification and organ/ tissue segmentation, focusing on AI and deep learning architectures that have already become the de facto approach. The clinical benefits of in-silico modelling advances linked with evolving 3D reconstruction and visualization applications are further documented. Concluding, integrative analytics approaches driven by associate research branches highlighted in this study promise to revolutionize imaging informatics as known today across the healthcare continuum for both radiology and digital pathology applications. The latter, is projected to enable informed, more accurate diagnosis, timely prognosis, and effective treatment planning, underpinning precision medicine

    Multiscale medial shape-based analysis of image objects

    Get PDF
    pre-printMedial representation of a three-dimensional (3-D) object or an ensemble of 3-D objects involves capturing the object interior as a locus of medial atoms, each atom being two vectors of equal length joined at the tail at the medial point. Medial representation has a variety of beneficial properties, among the most important of which are 1) its inherent geometry, provides an object-intrinsic coordinate system and thus provides correspondence between instances of the object in and near the object(s); 2) it captures the object interior and is, thus, very suitable for deformation; and 3) it provides the basis for an intuitive object-based multiscale sequence leading to efficiency of segmentation algorithms and trainability of statistical characterizations with limited training sets. As a result of these properties, medial representation is particularly suitable for the following image analysis tasks; how each operates will be described and will be illustrated by results: 1) segmentation of objects and object complexes via deformable models; 2) segmentation of tubular trees, e.g., of blood vessels, by following height ridges of measures of fit of medial atoms to target images; 3) object-based image registration via medial loci of such blood vessel trees; 4) statistical characterization of shape differences between control and pathological classes of structures. These analysis tasks are made possible by a new form of medial representation called m-reps, which is described

    Automated CTC Classification, Enumeration and Pheno Typing:Where Math meets Biology

    Get PDF

    Policy needs and options for a common approach towards modelling and simulation of human physiology and diseases with a focus on the virtual physiological human.

    Get PDF
    Life is the result of an intricate systemic interaction between many processes occurring at radically different spatial and temporal scales. Every day, worldwide biomedical research and clinical practice produce a huge amount of information on such processes. However, this information being highly fragmented, its integration is largely left to the human actors who find this task increasingly and ever more demanding in a context where the information available continues to increase exponentially. Investments in the Virtual Physiological Human (VPH) research are largely motivated by the need for integration in healthcare. As all health information becomes digital, the complexity of health care will continue to evolve, translating into an ever increasing pressure which will result from a growing demand in parallel to limited budgets. Hence, the best way to achieve the dream of personalised, preventive, and participative medicine at sustainable costs will be through the integration of all available data, information and knowledge

    Topical Issue "Dynamics of Systems on the Nanoscale (2021)". Editorial

    Full text link
    Exploration of the structure formation and dynamics of animate and inanimate matter on the nanometer scale is a highly interdisciplinary field of rapidly emerging research. It is relevant for various molecular and nanoscale systems of different origins and compositions and concerns numerous phenomena originating from physics, chemistry, biology, and materials science. This topical issue presents a collection of research papers devoted to different aspects of the Dynamics of Systems on the Nanoscale. Some of the contributions discuss specific applications of the research results in several modern and emerging technologies, such as controlled nanofabrication with charged particle beams or the design and practical realization of novel gamma-ray crystal-based light sources. Most works presented in this topical issue were reported at the joint Sixth International Conference "Dynamics of Systems on the Nanoscale" and the tenth International Symposium "Atomic Cluster Collisions" (DySoN-ISACC 2021), which were held in Santa Margherita Ligure, Italy, in October 2021.Comment: Editorial for the topical issue "Dynamics of Systems on the Nanoscale (2021)" of the European Physical Journal D; see https://epjd.epj.org/component/toc/?task=topic&id=161
    corecore