6,066 research outputs found

    A passivity approach to controller-observer design for robots

    Get PDF
    Passivity-based control methods for robots, which achieve the control objective by reshaping the robot system's natural energy via state feedback, have, from a practical point of view, some very attractive properties. However, the poor quality of velocity measurements may significantly deteriorate the control performance of these methods. In this paper the authors propose a design strategy that utilizes the passivity concept in order to develop combined controller-observer systems for robot motion control using position measurements only. To this end, first a desired energy function for the closed-loop system is introduced, and next the controller-observer combination is constructed such that the closed-loop system matches this energy function, whereas damping is included in the controller- observer system to assure asymptotic stability of the closed-loop system. A key point in this design strategy is a fine tuning of the controller and observer structure to each other, which provides solutions to the output-feedback robot control problem that are conceptually simple and easily implementable in industrial robot applications. Experimental tests on a two-DOF manipulator system illustrate that the proposed controller-observer systems enable the achievement of higher performance levels compared to the frequently used practice of numerical position differentiation for obtaining a velocity estimat

    New results in disturbance decoupled fault reconstruction in linear uncertain systems using two sliding mode observers in cascade

    Get PDF
    This paper presents a disturbance decoupled fault reconstruction (DDFR) scheme using two sliding mode observers in cascade. Measurable signals from the first observer are found to be the output of a fictitious system that is driven by the fault and disturbances. Then the signals are fed into a second observer which will reconstruct the fault. Sufficient conditions which guarantee DDFR are investigated and presented in terms of the original system matrices, and they are found to be less conservative than if only one single observer is used; therefore DDFR can be achieved for a wider class of systems using two sliding mode observers. A simulation example validates the claims made in this paper

    Output Feedback Controller Design for a Class of MIMO Nonlinear Systems Using High-Order Sliding-Mode Differentiators With Application to a Laboratory 3-D Crane

    Get PDF
    This paper addresses the problem of output feedback control design for a class of multi-input-multi-output (MIMO) nonlinear systems where the number of inputs is less than that of outputs. There are two difficulties in this design problem: 1) too few control inputs will not generally allow independent control over all outputs and 2) the state of the system is not available for measurements, and only the outputs are available through measurements. To address the first issue, a practical output feedback control problem is formulated, aiming to regulate only part of the outputs, and a controller structure with two design components in all or some chosen control inputs is proposed. To cope with the second difficulty, the recently developed high-order sliding mode differentiators (HOSMDs) are used to estimate the derivatives of the outputs needed in the controller design. With the derivatives estimated using HOSMDs, an output feedback controller is designed using the backstepping approach. Stability results are established for the designed controller under certain conditions. In order to test the applicability of the proposed output feedback controller in practical industrial problems, experiments are carried out though implementing the controller on a laboratory-scale 3-D crane. The experimental results are presented and reveal the advantage of the proposed controller structure, as well as the effect of controller gain and sampling periods

    Development of Urban Electric Bus Drivetrain

    Get PDF
    The development of the drivetrain for a new series of urban electric buses is presented in the paper. The traction and design properties of several drive variants are compared. The efficiency of the drive was tested using simulation calculations of the vehicle rides based on data from real bus lines in Prague. The results of the design work and simulation calculations are presented in the paper

    Fuzzy robust nonlinear control approach for electro-hydraulic flight motion simulator

    Get PDF
    AbstractA fuzzy robust nonlinear controller for hydraulic rotary actuators in flight motion simulators is proposed. Compared with other three-order models of hydraulic rotary actuators, the proposed controller based on first-order nonlinear model is more easily applied in practice, whose control law is relatively simple. It not only does not need high-order derivative of desired command, but also does not require the feedback signals of velocity, acceleration and jerk of hydraulic rotary actuators. Another advantage is that it does not rely on any information of friction, inertia force and external disturbing force/torque, which are always difficult to resolve in flight motion simulators. Due to the special composite vane seals of rectangular cross-section and goalpost shape used in hydraulic rotary actuators, the leakage model is more complicated than that of traditional linear hydraulic cylinders. Adaptive multi-input single-output (MISO) fuzzy compensators are introduced to estimate nonlinear uncertain functions about leakage and bulk modulus. Meanwhile, the decomposition of the uncertainties is used to reduce the total number of fuzzy rules. Different from other adaptive fuzzy compensators, a discontinuous projection mapping is employed to guarantee the estimation process to be bounded. Furthermore, with a sufficient number of fuzzy rules, the controller theoretically can guarantee asymptotic tracking performance in the presence of the above uncertainties, which is very important for high-accuracy tracking control of flight motion simulators. Comparative experimental results demonstrate the effectiveness of the proposed algorithm, which can guarantee transient performance and better final accurate tracking in the presence of uncertain nonlinearities and parametric uncertainties

    Model predictive control techniques for hybrid systems

    Get PDF
    This paper describes the main issues encountered when applying model predictive control to hybrid processes. Hybrid model predictive control (HMPC) is a research field non-fully developed with many open challenges. The paper describes some of the techniques proposed by the research community to overcome the main problems encountered. Issues related to the stability and the solution of the optimization problem are also discussed. The paper ends by describing the results of a benchmark exercise in which several HMPC schemes were applied to a solar air conditioning plant.Ministerio de Eduación y Ciencia DPI2007-66718-C04-01Ministerio de Eduación y Ciencia DPI2008-0581

    Comparative Study of Sensorless Control Methods of PMSM Drives

    Get PDF
    Recently, permanent magnet synchronous motors (PMSMs) are increasingly used in high performance variable speed drives of many industrial applications. This is because the PMSM has many features, like high efficiency, compactness, high torque to inertia ratio, rapid dynamic response, simple modeling and control, and maintenance-free operation. In most applications, the presence of such a position sensor presents several disadvantages, such as reduced reliability, susceptibility to noise, additional cost and weight and increased complexity of the drive system. For these reasons, the development of alternative indirect methods for speed and position control becomes an important research topic. Many advantages of sensorless control such as reduced hardware complexity, low cost, reduced size, cable elimination, increased noise immunity, increased reliability and decreased maintenance. The key problem in sensorless vector control of ac drives is the accurate dynamic estimation of the stator flux vector over a wide speed range using only terminal variables (currents and voltages). The difficulty comprises state estimation at very low speeds where the fundamental excitation is low and the observer performance tends to be poor. The reasons are the observer sensitivity to model parameter variations, unmodeled nonlinearities and disturbances, limited accuracy of acquisition signals, drifts, and dc offsets. Poor speed estimation at low speed is attributed to data acquisition errors, voltage distortion due the PWM inverter and stator resistance drop which degrading the performance of sensorless drive. Moreover, the noises of system and measurements are considered other main problems. This paper presents a comprehensive study of the different methods of speed and position estimations for sensorless PMSM drives. A deep insight of the advantages and disadvantages of each method is investigated. Furthermore, the difficulties faced sensorless PMSM drives at low speeds as well as the reasons are highly demonstrated. Keywords: permanent magnet, synchronous motor, sensorless control, speed estimation, position estimation, parameter adaptation
    corecore