2,199 research outputs found

    Random noise in Diffusion Tensor Imaging, its Destructive Impact and Some Corrections

    Get PDF
    The empirical origin of random noise is described, its influence on DTI variables is illustrated by a review of numerical and in vivo studies supplemented by new simulations investigating high noise levels. A stochastic model of noise propagation is presented to structure noise impact in DTI. Finally, basics of voxelwise and spatial denoising procedures are presented. Recent denoising procedures are reviewed and consequences of the stochastic model for convenient denoising strategies are discussed

    Constrained parameterization with applications to graphics and image processing.

    Get PDF
    Surface parameterization is to establish a transformation that maps the points on a surface to a specified parametric domain. It has been widely applied to computer graphics and image processing fields. The challenging issue is that the usual positional constraints always result in triangle flipping in parameterizations (also called foldovers). Additionally, distortion is inevitable in parameterizations. Thus the rigid constraint is always taken into account. In general, the constraints are application-dependent. This thesis thus focuses on the various constraints depended on applications and investigates the foldover-free constrained parameterization approaches individually. Such constraints usually include, simple positional constraints, tradeoff of positional constraints and rigid constraint, and rigid constraint. From the perspective of applications, we aim at the foldover-free parameterization methods with positional constraints, the as-rigid-as-possible parameterization with positional constraints, and the well-shaped well-spaced pre-processing procedure for low-distortion parameterizations in this thesis. The first contribution of this thesis is the development of a RBF-based re-parameterization algorithm for the application of the foldover-free constrained texture mapping. The basic idea is to split the usual parameterization procedure into two steps, 2D parameterization with the constraints of convex boundaries and 2D re-parameterization with the interior positional constraints. Moreover, we further extend the 2D re-parameterization approach with the interior positional constraints to high dimensional datasets, such as, volume data and polyhedrons. The second contribution is the development of a vector field based deformation algorithm for 2D mesh deformation and image warping. Many presented deformation approaches are used to employ the basis functions (including our proposed RBF-based re-parameterization algorithm here). The main problem is that such algorithms have infinite support, that is, any local deformation always leads to small changes over the whole domain. Our presented vector field based algorithm can effectively carry on the local deformation while reducing distortion as much as possible. The third contribution is the development of a pre-processing for surface parameterization. Except the developable surfaces, the current parameterization approaches inevitably incur large distortion. To reduce distortion, we proposed a pre-processing procedure in this thesis, including mesh partition and mesh smoothing. As a result, the resulting meshes are partitioned into a set of small patches with rectangle-like boundaries. Moreover, they are well-shaped and well-spaced. This pre-processing procedure can evidently improve the quality of meshes for low-distortion parameterizations

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented.Comment: 53 pages, 17 figure

    Feature preserving smoothing of 3D surface scans

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2004.Includes bibliographical references (p. 63-70).With the increasing use of geometry scanners to create 3D models, there is a rising need for effective denoising of data captured with these devices. This thesis presents new methods for smoothing scanned data, based on extensions of the bilateral filter to 3D. The bilateral filter is a non-linear, edge-preserving image filter; its extension to 3D leads to an efficient, feature preserving filter for a wide class of surface representations, including points and "polygon soups."by Thouis Raymond Jones.S.M

    HiRes deconvolution of Spitzer infrared images

    Get PDF
    Spitzer provides unprecedented sensitivity in the infrared (IR), but the spatial resolution is limited by a relatively small aperture (0.85 m) of the primary mirror. In order to maximize the scientific return it is desirable to use processing techniques which make the optimal use of the spatial information in the observations. We have developed a deconvolution technique for Spitzer images. The algorithm, "HiRes" and its implementation has been discussed by Backus et al. in 2005. Here we present examples of Spitzer IR images from the Infrared Array Camera (IRAC) and MIPS, reprocessed using this technique. Examples of HiRes processing include a variety of objects from point sources to complex extended regions. The examples include comparison of Spitzer deconvolved images with high-resolution Keck and Hubble Space Telescope images. HiRes deconvolution improves the visualization of spatial morphology by enhancing resolution (to sub-arcsecond levels in the IRAC bands) and removing the contaminating sidelobes from bright sources. The results thereby represent a significant improvement over previously-published Spitzer images. The benefits of HiRes include (a) sub-arcsec resolution (~0".6-0".8 for IRAC channels); (b) the ability to detect sources below the diffraction-limited confusion level; (c) the ability to separate blended sources, and thereby provide guidance to point-source extraction procedures; (d) an improved ability to show the spatial morphology of resolved sources. We suggest that it is a useful technique to identify features which are interesting enough for follow-up deeper analysis

    Preconditioned Nonlinear Conjugate Gradient Method of Stretch Energy Minimization for Area-Preserving Parameterizations

    Full text link
    Stretch energy minimization (SEM) is widely recognized as one of the most effective approaches for the computation of area-preserving mappings. In this paper, we propose a novel preconditioned nonlinear conjugate gradient method for SEM with guaranteed theoretical convergence. Numerical experiments indicate that our new approach has significantly improved area-preserving accuracy and computational efficiency compared to another state-of-the-art algorithm. Furthermore, we present an application of surface registration to illustrate the practical utility of area-preserving mappings as parameterizations of surfaces.Comment: 18 pages, 8 figure

    Non-Iterative, Feature-Preserving Mesh Smoothing

    Get PDF
    With the increasing use of geometry scanners to create 3D models, there is a rising need for fast and robust mesh smoothing to remove inevitable noise in the measurements. While most previous work has favored diffusion-based iterative techniques for feature-preserving smoothing, we propose a radically different approach, based on robust statistics and local first-order predictors of the surface. The robustness of our local estimates allows us to derive a non-iterative feature-preserving filtering technique applicable to arbitrary "triangle soups". We demonstrate its simplicity of implementation and its efficiency, which make it an excellent solution for smoothing large, noisy, and non-manifold meshes.Singapore-MIT Alliance (SMA
    • …
    corecore