133,859 research outputs found

    Edge-Aware Image Color Appearance and Difference Modeling

    Full text link
    The perception of color is one of the most important aspects of human vision. From an evolutionary perspective, the accurate perception of color is crucial to distinguishing friend from foe, and food from fatal poison. As a result, humans have developed a keen sense of color and are able to detect subtle differences in appearance, while also robustly identifying colors across illumination and viewing conditions. In this paper, we shall briefly review methods for adapting traditional color appearance and difference models to complex image stimuli, and propose mechanisms to improve their performance. In particular, we find that applying contrast sensitivity functions and local adaptation rules in an edge-aware manner improves image difference predictions

    Nighttime Thermal Infrared Image Colorization with Feedback-based Object Appearance Learning

    Full text link
    Stable imaging in adverse environments (e.g., total darkness) makes thermal infrared (TIR) cameras a prevalent option for night scene perception. However, the low contrast and lack of chromaticity of TIR images are detrimental to human interpretation and subsequent deployment of RGB-based vision algorithms. Therefore, it makes sense to colorize the nighttime TIR images by translating them into the corresponding daytime color images (NTIR2DC). Despite the impressive progress made in the NTIR2DC task, how to improve the translation performance of small object classes is under-explored. To address this problem, we propose a generative adversarial network incorporating feedback-based object appearance learning (FoalGAN). Specifically, an occlusion-aware mixup module and corresponding appearance consistency loss are proposed to reduce the context dependence of object translation. As a representative example of small objects in nighttime street scenes, we illustrate how to enhance the realism of traffic light by designing a traffic light appearance loss. To further improve the appearance learning of small objects, we devise a dual feedback learning strategy to selectively adjust the learning frequency of different samples. In addition, we provide pixel-level annotation for a subset of the Brno dataset, which can facilitate the research of NTIR image understanding under multiple weather conditions. Extensive experiments illustrate that the proposed FoalGAN is not only effective for appearance learning of small objects, but also outperforms other image translation methods in terms of semantic preservation and edge consistency for the NTIR2DC task.Comment: 14 pages, 14 figures. arXiv admin note: text overlap with arXiv:2208.0296

    Segmentation-Aware Convolutional Networks Using Local Attention Masks

    Get PDF
    We introduce an approach to integrate segmentation information within a convolutional neural network (CNN). This counter-acts the tendency of CNNs to smooth information across regions and increases their spatial precision. To obtain segmentation information, we set up a CNN to provide an embedding space where region co-membership can be estimated based on Euclidean distance. We use these embeddings to compute a local attention mask relative to every neuron position. We incorporate such masks in CNNs and replace the convolution operation with a "segmentation-aware" variant that allows a neuron to selectively attend to inputs coming from its own region. We call the resulting network a segmentation-aware CNN because it adapts its filters at each image point according to local segmentation cues. We demonstrate the merit of our method on two widely different dense prediction tasks, that involve classification (semantic segmentation) and regression (optical flow). Our results show that in semantic segmentation we can match the performance of DenseCRFs while being faster and simpler, and in optical flow we obtain clearly sharper responses than networks that do not use local attention masks. In both cases, segmentation-aware convolution yields systematic improvements over strong baselines. Source code for this work is available online at http://cs.cmu.edu/~aharley/segaware
    • …
    corecore