3,578 research outputs found

    Video Acceleration Magnification

    Full text link
    The ability to amplify or reduce subtle image changes over time is useful in contexts such as video editing, medical video analysis, product quality control and sports. In these contexts there is often large motion present which severely distorts current video amplification methods that magnify change linearly. In this work we propose a method to cope with large motions while still magnifying small changes. We make the following two observations: i) large motions are linear on the temporal scale of the small changes; ii) small changes deviate from this linearity. We ignore linear motion and propose to magnify acceleration. Our method is pure Eulerian and does not require any optical flow, temporal alignment or region annotations. We link temporal second-order derivative filtering to spatial acceleration magnification. We apply our method to moving objects where we show motion magnification and color magnification. We provide quantitative as well as qualitative evidence for our method while comparing to the state-of-the-art.Comment: Accepted paper at CVPR 2017. Project webpage: http://acceleration-magnification.github.io

    Gravitational Lensing by Spinning Black Holes in Astrophysics, and in the Movie Interstellar

    Get PDF
    Interstellar is the first Hollywood movie to attempt depicting a black hole as it would actually be seen by somebody nearby. For this we developed a code called DNGR (Double Negative Gravitational Renderer) to solve the equations for ray-bundle (light-beam) propagation through the curved spacetime of a spinning (Kerr) black hole, and to render IMAX-quality, rapidly changing images. Our ray-bundle techniques were crucial for achieving IMAX-quality smoothness without flickering. This paper has four purposes: (i) To describe DNGR for physicists and CGI practitioners . (ii) To present the equations we use, when the camera is in arbitrary motion at an arbitrary location near a Kerr black hole, for mapping light sources to camera images via elliptical ray bundles. (iii) To describe new insights, from DNGR, into gravitational lensing when the camera is near the spinning black hole, rather than far away as in almost all prior studies. (iv) To describe how the images of the black hole Gargantua and its accretion disk, in the movie \emph{Interstellar}, were generated with DNGR. There are no new astrophysical insights in this accretion-disk section of the paper, but disk novices may find it pedagogically interesting, and movie buffs may find its discussions of Interstellar interesting.Comment: 46 pages, 17 figure

    The Video Mesh: A Data Structure for Image-based Video Editing

    Get PDF
    This paper introduces the video mesh, a data structure for representing video as 2.5D "paper cutouts." The video mesh allows interactive editing of moving objects and modeling of depth, which enables 3D effects and post-exposure camera control. The video mesh sparsely encodes optical flow as well as depth, and handles occlusion using local layering and alpha mattes. Motion is described by a sparse set of points tracked over time. Each point also stores a depth value. The video mesh is a triangulation over this point set and per-pixel information is obtained by interpolation. The user rotoscopes occluding contours and we introduce an algorithm to cut the video mesh along them. Object boundaries are refined with perpixel alpha values. The video mesh is at its core a set of texture mapped triangles, we leverage graphics hardware to enable interactive editing and rendering of a variety of effects. We demonstrate the effectiveness of our representation with a number of special effects including 3D viewpoint changes, object insertion, and depth-of-field manipulation
    • …
    corecore