2,284 research outputs found

    Linear trees in uniform hypergraphs

    Full text link
    Given a tree T on v vertices and an integer k exceeding one. One can define the k-expansion T^k as a k-uniform linear hypergraph by enlarging each edge with a new, distinct set of (k-2) vertices. Then T^k has v+ (v-1)(k-2) vertices. The aim of this paper is to show that using the delta-system method one can easily determine asymptotically the size of the largest T^k-free n-vertex hypergraph, i.e., the Turan number of T^k.Comment: Slightly revised, 14 pages, originally presented on Eurocomb 201

    Krausz dimension and its generalizations in special graph classes

    Get PDF
    A {\it krausz (k,m)(k,m)-partition} of a graph GG is the partition of GG into cliques, such that any vertex belongs to at most kk cliques and any two cliques have at most mm vertices in common. The {\it mm-krausz} dimension kdimm(G)kdim_m(G) of the graph GG is the minimum number kk such that GG has a krausz (k,m)(k,m)-partition. 1-krausz dimension is known and studied krausz dimension of graph kdim(G)kdim(G). In this paper we prove, that the problem "kdim(G)3""kdim(G)\leq 3" is polynomially solvable for chordal graphs, thus partially solving the problem of P. Hlineny and J. Kratochvil. We show, that the problem of finding mm-krausz dimension is NP-hard for every m1m\geq 1, even if restricted to (1,2)-colorable graphs, but the problem "kdimm(G)k""kdim_m(G)\leq k" is polynomially solvable for (,1)(\infty,1)-polar graphs for every fixed k,m1k,m\geq 1
    corecore