241,907 research outputs found

    Security Trust Zone in 5G Networks

    Full text link
    Fifth Generation (5G) telecommunication system is going to deliver a flexible radio access network (RAN). Security functions such as authorization, authentication and accounting (AAA) are expected to be distributed from central clouds to edge clouds. We propose a novel architectural security solution that applies to 5G networks. It is called Trust Zone (TZ) that is designed as an enhancement of the 5G AAA in the edge cloud. TZ also provides an autonomous and decentralized security policy for different tenants under variable network conditions. TZ also initiates an ability of disaster cognition and extends the security functionalities to a set of flexible and highly available emergency services in the edge cloud

    Observations of shallow convective clouds generated by solar heating of dark smoke plumes

    Get PDF
    The SEVIRI instrument on the Meteosat Second Generation satellite with both fine spatial and temporal resolution allows to detect and follow the dynamics of fast developing meteorological events like spreading smoke plumes and the lifecycles of convective clouds. Smoke plumes have the ability to change the atmospheric heat content due to absorption and reduced reflection of solar radiation. By these means they can trigger formation of shallow convective clouds at their edge. A heavy smoke plume emerging from burning Lebanese oil tanks and spreading over adjacent deserts on 17 July 2006 has been observed as an example of such an effect. This study suggests a physical explanation of the observed convection along the edge of the smoke plume, namely the strong thermal contrast resulting from solar heating of the smoke layer

    Galactic Edge Clouds I: Molecular Line Observations and Chemical Modelling of Edge Cloud 2

    Full text link
    Edge Cloud 2 (EC2) is a molecular cloud, about 35 pc in size, with one of the largest galactocentric distances known to exist in the Milky Way. We present observations of a peak CO emission region in the cloud and use these to determine its physical characteristics. We calculate a gas temperature of 20 K and a density of n(H2) ~ 10^4 cm^-3. Based on our CO maps, we estimate the mass of EC2 at around 10^4 M_sun and continuum observations suggest a dust-to-gas mass ratio as low as 0.001. Chemical models have been developed to reproduce the abundances in EC2 and they indicate that: heavy element abundances may be reduced by a factor of five relative to the solar neighbourhood (similar to dwarf irregular galaxies and damped Lyman alpha systems); very low extinction (Av < 4 mag) due to a very low dust-to-gas ratio; an enhanced cosmic ray ionisation rate; and a higher UV field compared to local interstellar values. The reduced abundances may be attributed to the low level of star formation in this region and are probably also related to the continuing infall of primordial (or low metallicity) halo gas since the Milky Way formed. Finally, we note that shocks from the old supernova remnant GSH 138-01-94 may have determined the morphology and dynamics of EC2.Comment: Accepted by ApJ 7 August 2007. 29 pages, 9 figures, 10 tables. PMR now at NRAO, Green Bank, WV, USA. TJM now at Queen's University Belfast, UK. GB now at Yale University, CT, US

    HST Imaging of Decoupled Dust Clouds in the Ram Pressure Stripped Virgo Spirals NGC 4402 and NGC 4522

    Full text link
    We present the highest-resolution study to date of the ISM in galaxies undergoing ram pressure stripping, using HST BVI imaging of NGC 4522 and NGC 4402, Virgo Cluster spirals that are well-known to be experiencing ICM ram pressure. We find that throughout most of both galaxies, the main dust lane has a fairly well-defined edge, with a population of GMC-sized (tens- to hundreds-of-pc scale), isolated, highly extincting dust clouds located up to ~1.5 kpc radially beyond it. Outside of these dense clouds, the area has little or no diffuse dust extinction, indicating that the clouds have decoupled from the lower-density ISM material that has already been stripped. Several of the dust clouds have elongated morphologies that indicate active ram pressure, including two large (kpc-scale) filaments in NGC 4402 that are elongated in the projected ICM wind direction. We calculate a lower limit on the HI + H_2 masses of these clouds based on their dust extinctions and find that a correction factor of ~10 gives cloud masses consistent with those measured in CO for clouds of similar diameters, probably due to the complicating factors of foreground light, cloud substructure, and resolution limitations. Assuming that the clouds' actual masses are consistent with those of GMCs of similar diameters (~10^4-10^5 M_sun), we estimate that only a small fraction (~1-10%) of the original HI + H_2 remains in the parts of the disks with decoupled clouds. Based on H-alpha images, a similar fraction of star formation persists in these regions, 2-3% of the estimated pre-stripping star formation rate. We find that the decoupled cloud lifetimes may be up to 150-200 Myr.Comment: 20 pages, 22 figure

    Remote sensing of cloud base charge

    Get PDF
    Layer clouds are abundant in the Earth's atmosphere. Such clouds do not become sufficiently strongly charged to generate lightning, but they show weak charging along the upper and lower cloud boundaries where there is a conductivity transition. Cloud edge charging has recently been observed using balloon-carried electrometers. Measurement of cloud boundary charging without balloons is shown to be possible here for low altitude (<1km) charged cloud bases, through combining their effect on the surface electric field with laser time of flight cloud base height measurements, and the application of simple electrostatic models.Comment: Proceedings of the Electrostatics Society of America conference, Ottawa, June 201

    On the Dynamics of Comets in Extrasolar Planetary Systems

    Full text link
    Since very recently, we acquired knowledge on the existence of comets in extrasolar planetary systems. The formation of comets together with planets around host stars now seems evident. As stars are often born in clusters of interstellar clouds, the interaction between the systems will lead to the exchange of material at the edge of the clouds. Therefore, almost every planetary system should have leftover remnants as a result of planetary formation in form of comets at the edges of those systems. These Oort clouds around stars are often disturbed by different processes (e.g., galactic tides, passing stars, etc.), which consequently scatter bodies from the distant clouds into the system close to the host star. Regarding the Solar System, we observe this outcome in the form of cometary families. This knowledge supports the assumption of the existence of comets around other stars. In the present work, we study the orbital dynamics of hypothetical exocomets, based on detailed computer simulations, in three star-planet systems, which are: HD~10180, 47~UMa, and HD~141399. These systems host one or more Jupiter-like planets, which change the orbits of the incoming comets in characteristic ways
    corecore