2 research outputs found

    Deep Reinforcement Learning for Delay-Oriented IoT Task Scheduling in Space-Air-Ground Integrated Network

    Full text link
    In this paper, we investigate a computing task scheduling problem in space-air-ground integrated network (SAGIN) for delay-oriented Internet of Things (IoT) services. In the considered scenario, an unmanned aerial vehicle (UAV) collects computing tasks from IoT devices and then makes online offloading decisions, in which the tasks can be processed at the UAV or offloaded to the nearby base station or the remote satellite. Our objective is to design a task scheduling policy that minimizes offloading and computing delay of all tasks given the UAV energy capacity constraint. To this end, we first formulate the online scheduling problem as an energy-constrained Markov decision process (MDP). Then, considering the task arrival dynamics, we develop a novel deep risk-sensitive reinforcement learning algorithm. Specifically, the algorithm evaluates the risk, which measures the energy consumption that exceeds the constraint, for each state and searches the optimal parameter weighing the minimization of delay and risk while learning the optimal policy. Extensive simulation results demonstrate that the proposed algorithm can reduce the task processing delay by up to 30% compared to probabilistic configuration methods while satisfying the UAV energy capacity constraint.Comment: 14 pages, 8 figure

    Anomaly Detection using Edge Computing in Video Surveillance System: Review

    Full text link
    The current concept of Smart Cities influences urban planners and researchers to provide modern, secured and sustainable infrastructure and give a decent quality of life to its residents. To fulfill this need video surveillance cameras have been deployed to enhance the safety and well-being of the citizens. Despite technical developments in modern science, abnormal event detection in surveillance video systems is challenging and requires exhaustive human efforts. In this paper, we surveyed various methodologies developed to detect anomalies in intelligent video surveillance. Firstly, we revisit the surveys on anomaly detection in the last decade. We then present a systematic categorization of methodologies developed for ease of understanding. Considering the notion of anomaly depends on context, we identify different objects-of-interest and publicly available datasets in anomaly detection. Since anomaly detection is considered a time-critical application of computer vision, our emphasis is on anomaly detection using edge devices and approaches explicitly designed for them. Further, we discuss the challenges and opportunities involved in anomaly detection at the edge.Comment: 26 pages, 6 figures, 5 Table
    corecore