8 research outputs found

    Distributed Algorithms for Internet-of-Things-enabled Prosumer Markets: A Control Theoretic Perspective

    Full text link
    Internet-of-Things (IoT) enables the development of sharing economy applications. In many sharing economy scenarios, agents both produce as well as consume a resource; we call them prosumers. A community of prosumers agrees to sell excess resource to another community in a prosumer market. In this chapter, we propose a control theoretic approach to regulate the number of prosumers in a prosumer community, where each prosumer has a cost function that is coupled through its time-averaged production and consumption of the resource. Furthermore, each prosumer runs its distributed algorithm and takes only binary decisions in a probabilistic way, whether to produce one unit of the resource or not and to consume one unit of the resource or not. In the proposed approach, prosumers do not explicitly exchange information with each other due to privacy reasons, but little exchange of information is required for feedback signals, broadcast by a central agency. In the proposed approach, prosumers achieve the optimal values asymptotically. Furthermore, the proposed approach is suitable to implement in an IoT context with minimal demands on infrastructure. We describe two use cases; community-based car sharing and collaborative energy storage for prosumer markets. We also present simulation results to check the efficacy of the algorithms.Comment: To appear as a chapter in "Analytics for the Sharing Economy: Mathematics, Engineering and Business Perspectives", Editors: E. Crisostomi et al., Springer, 2019 (forthcoming book

    A policy-based architecture for virtual network embedding

    Full text link
    Network virtualization is a technology that enables multiple virtual instances to coexist on a common physical network infrastructure. This paradigm fostered new business models, allowing infrastructure providers to lease or share their physical resources. Each virtual network is isolated and can be customized to support a new class of customers and applications. To this end, infrastructure providers need to embed virtual networks on their infrastructure. The virtual network embedding is the (NP-hard) problem of matching constrained virtual networks onto a physical network. Heuristics to solve the embedding problem have exploited several policies under different settings. For example, centralized solutions have been devised for small enterprise physical networks, while distributed solutions have been proposed over larger federated wide-area networks. In this thesis we present a policy-based architecture for the virtual network embedding problem. By policy, we mean a variant aspect of any of the three (invariant) embedding mechanisms: physical resource discovery, virtual network mapping, and allocation on the physical infrastructure. Our architecture adapts to different scenarios by instantiating appropriate policies, and has bounds on embedding efficiency, and on convergence embedding time, over a single provider, or across multiple federated providers. The performance of representative novel and existing policy configurations are compared via extensive simulations, and over a prototype implementation. We also present an object model as a foundation for a protocol specification, and we release a testbed to enable users to test their own embedding policies, and to run applications within their virtual networks. The testbed uses a Linux system architecture to reserve virtual node and link capacities

    A policy-based architecture for virtual network embedding (PhD thesis)

    Full text link
    Network virtualization is a technology that enables multiple virtual instances to coexist on a common physical network infrastructure. This paradigm fostered new business models, allowing infrastructure providers to lease or share their physical resources. Each virtual network is isolated and can be customized to support a new class of customers and applications. To this end, infrastructure providers need to embed virtual networks on their infrastructure. The virtual network embedding is the (NP-hard) problem of matching constrained virtual networks onto a physical network. Heuristics to solve the embedding problem have exploited several policies under different settings. For example, centralized solutions have been devised for small enterprise physical networks, while distributed solutions have been proposed over larger federated wide-area networks. In this thesis we present a policy-based architecture for the virtual network embedding problem. By policy, we mean a variant aspect of any of the three (invariant) embedding mechanisms: physical resource discovery, virtual network mapping, and allocation on the physical infrastructure. Our architecture adapts to different scenarios by instantiating appropriate policies, and has bounds on embedding enablesciency, and on convergence embedding time, over a single provider, or across multiple federated providers. The performance of representative novel and existing policy configuration are compared via extensive simulations, and over a prototype implementation. We also present an object model as a foundation for a protocol specification, and we release a testbed to enable users to test their own embedding policies, and to run applications within their virtual networks. The testbed uses a Linux system architecture to reserve virtual node and link capacities

    Economic Issues in Shared Infrastructures

    No full text
    corecore