34,306 research outputs found

    A Talk on Quantum Cryptography, or How Alice Outwits Eve

    Get PDF
    Alice and Bob wish to communicate without the archvillainess Eve eavesdropping on their conversation. Alice, decides to take two college courses, one in cryptography, the other in quantum mechanics. During the courses, she discovers she can use what she has just learned to devise a cryptographic communication system that automatically detects whether or not Eve is up to her villainous eavesdropping. Some of the topics discussed are Heisenberg's Uncertainty Principle, the Vernam cipher, the BB84 and B92 cryptographic protocols. The talk ends with a discussion of some of Eve's possible eavesdropping strategies, opaque eavesdropping, translucent eavesdropping, and translucent eavesdropping with entanglement.Comment: 31 pages, 8 figures. Revised version of a paper published in "Coding Theory, and Cryptography: From Geheimscheimschreiber and Enigma to Quantum Theory," (edited by David Joyner), Springer-Verlag, 1999 (pp. 144-174). To be published with the permission of Springer-Verlag in an AMS PSAPM Short Course volume entitled "Quantum Computation.

    Coherent State Quantum Key Distribution with Entanglement Witnessing

    Full text link
    An entanglement witness approach to quantum coherent state key distribution and a system for its practical implementation are described. In this approach, eavesdropping can be detected by a change in sign of either of two witness functions, an entanglement witness S or an eavesdropping witness W. The effects of loss and eavesdropping on system operation are evaluated as a function of distance. Although the eavesdropping witness W does not directly witness entanglement for the system, its behavior remains related to that of the true entanglement witness S. Furthermore, W is easier to implement experimentally than S. W crosses the axis at a finite distance, in a manner reminiscent of entanglement sudden death. The distance at which this occurs changes measurably when an eavesdropper is present. The distance dependance of the two witnesses due to amplitude reduction and due to increased variance resulting from both ordinary propagation losses and possible eavesdropping activity is provided. Finally, the information content and secure key rate of a continuous variable protocol using this witness approach are given

    Optimal eavesdropping in cryptography with three-dimensional quantum states

    Full text link
    We study optimal eavesdropping in quantum cryptography with three-dimensional systems, and show that this scheme is more secure than protocols using two-dimensional states. We generalize the according eavesdropping transformation to arbitrary dimensions, and discuss the connection with optimal quantum cloning.Comment: 4 pages, 2 figure
    corecore