3,315 research outputs found
The boundary between the Central Asian Orogenic belt and Tethyan tectonic domain deduced from Pb isotopic data
Quantification of three-dimensional folding using fluvial terraces: A case study from the Mushi anticline, northern margin of the Chinese Pamir
Fold deformation in three dimensions involves shortening, uplift, and lateral growth. Fluvial terraces represent strain markers that have been widely applied to constrain a fold's shortening and uplift. For the lateral growth, however, the utility of fluvial terraces has been commonly ignored. Situated along northern margin of Chinese Pamir, the Mushi anticline preserves, along its northern flank, flights of passively deformed fluvial terraces that can be used to constrain three-dimensional folding history, especially lateral growth. The Mushi anticline is a geometrically simple fault-tip fold with a total shortening of 740?±?110?m and rock uplift of ~1300?m. Geologic and geomorphic mapping and dGPS surveys reveal that terrace surfaces perpendicular to the fold's strike display increased rotation with age, implying the fold grows by progressive limb rotation. We use a pure-shear fault-tip fold model to estimate a uniform shortening rate of 1.5?+?1.3/?0.5?mm/a and a rock-uplift rate of 2.3?+?2.1/?0.8?mm/a. Parallel to the fold's strike, longitudinal profiles of terrace surfaces also display age-dependent increases in slopes. We present a new model to distinguish lateral growth mechanisms (lateral lengthening and/or rotation above a fixed tip). This model indicates that eastward lengthening of the Mushi anticline ceased by at least ~134?ka and its lateral growth has been dominated by rotation. Our study confirms that terrace deformation along a fold's strike not only can constrain the lateral lengthening rate but can serve to quantify the magnitude and rate of lateral rotation: attributes that are commonly difficult to define when relying on other geomorphic criteria
Changes in Snow Phenology from 1979 to 2016 over the Tianshan Mountains, Central Asia
Snowmelt from the Tianshan Mountains (TS) is a major contributor to the water resources of the Central Asian region. Thus, changes in snow phenology over the TS have significant implications for regional water supplies and ecosystem services. However, the characteristics of changes in snow phenology and their influences on the climate are poorly understood throughout the entire TS due to the lack of in situ observations, limitations of optical remote sensing due to clouds, and decentralized political landscapes. Using passive microwave remote sensing snow data from 1979 to 2016 across the TS, this study investigates the spatiotemporal variations of snow phenology and their attributes and implications. The results show that the mean snow onset day (Do), snow end day (De), snow cover duration days (Dd), and maximum snow depth (SDmax) from 1979 to 2016 were the 78.2nd day of hydrological year (DOY), 222.4th DOY, 146.2 days, and 16.1 cm over the TS, respectively. Dd exhibited a spatial distribution of days with a temperature of \u3c0 \u3e°C derived from meteorological station observations. Anomalies of snow phenology displayed the regional diversities over the TS, with shortened Dd in high-altitude regions and the Fergana Valley but increased Dd in the Ili Valley and upper reaches of the Chu and Aksu Rivers. Increased SDmax was exhibited in the central part of the TS, and decreased SDmax was observed in the western and eastern parts of the TS. Changes in Dd were dominated by earlier De, which was caused by increased melt-season temperatures (Tm). Earlier De with increased accumulation of seasonal precipitation (Pa) influenced the hydrological processes in the snowmelt recharge basin, increasing runoff and earlier peak runoff in the spring, which intensified the regional water crisi
Estimating the characteristics of runoff inflow into Lake Gojal in ungauged, highly glacierized upper Hunza River Basin, Pakistan
Motivated by the potential flood outburst of Lake Gojal in the ungauged highly glacierized (27%) upper Hunza River Basin (HRB) in Pakistan that was dammed by a massive landslide on 4 January 2010, we attempt to analyze the characteristics of water inflow to the lake employing remote sensing data, two hydrological models, and sparsely observed data. One of the models (Model I) is a monthly degree-day model, while another (Model II) is the variable infiltration capacity (VIC) model. The mixture of glacier runoff output from Model I and runoff over unglacierized areas calculated by Model II has a similar seasonal variation pattern as that estimated from data recorded at a downstream station. This suggests that glacier runoff is the main source (87%) of runoff inflow into the lake. A sensitivity analysis suggests that the water inflow to the lake is highly sensitive to an increase in air temperature. Runoff in May is predicted to sharply increase by 15% to more than two-fold if the air temperature increases by 1 to 7, but it is predicted to increase only from 9% to 34% if the precipitation increases by 10% to 40%. The results suggested that the water inflow into Lake Gojal will not sharply rise even if there is heavy rain, and it needs to be in caution if the air temperature sharply increases. Analysis on long-term air temperature record indicates that the water inflow into the lake in May 2010 was probably less than average owing to the relatively low air temperature. Consequently, the flood outburst did not occur before the completion of the spillway on 29 May 2010. © 2013 China University of Geosciences and Springer-Verlag Berlin Heidelberg
Tectonic evolution of the northern part of Western Tianshan (Xinjiang, NW China).
The Yili Block is important for understanding the Late Paleozoic geodynamic evolution of Central Asia. It is bounded to the north by the Northern Tianshan Carboniferous flysch and ophiolitic mélange. The center of the Block is dominated by Carboniferous sedimentary rocks with intercalation of volcanic rocks. Petrological and geochemical features of these Carboniferous volcanic rocks show that: (1) they belong to the calc-alkaline series, (2) they display prominent Nb-Ta negative anomalies consistent with subduction-related magmas, and (3) HFSE-based discriminations place these volcanic rocks in the field of continental arcs. The depositional evolution of the sedimentary series shows evidence for Carboniferous sedimentation in a basin instead of rifting as previously proposed. All these evidences, together with the occurrence of contemporaneous turbidites and ophiolitic mélange along the northern boundary of the Yili Block, allow us to infer that the northern border of the Yili Block was a continental active margin during the Carboniferous. The Late Carboniferous southward subduction that finally closed the Late Devonian to Early Carboniferous North Tianshan oceanic basin was followed by Permian-Mesozoic polyphase transcurrent faulting
Numerical simulations of the impacts of mountain on oasis effects in arid Central Asia
The oases in the mountain-basin systems of Central Asia are extremely fragile. Investigating oasis effects and oasis-desert interactions is important for understanding the ecological stability of oases. However, previous studies have been performed only in oasis-desert environments and have not considered the impacts of mountains. In this study, oasis effects were explored in the context of mountain effects in the northern Tianshan Mountains (NTM) using the Weather Research and Forecasting (WRF) model. Four numerical simulations are performed. The def simulation uses the default terrestrial datasets provided by the WRF model. The mod simulation uses actual terrestrial datasets from satellite products. The non-oasis simulation is a scenario simulation in which oasis areas are replaced by desert conditions, while all other conditions are the same as the mod simulation. Finally, the non-mountain simulation is a scenario simulation in which the elevation values of all grids are set to a constant value of 300 m, while all other conditions are the same as in the mod simulation. The mod simulation agrees well with near-surface measurements of temperature, relative humidity and latent heat flux. The Tianshan Mountains exert a cooling and wetting effects in the NTM region. The oasis breeze circulation (OBC) between oases and the deserts is counteracted by the stronger background circulation. Thus, the self-supporting mechanism of oases originating from the OBC plays a limited role in maintaining the ecological stability of oases in this mountain-basin system. However, the mountain wind causes the cold-wet'' island effects of the oases to extend into the oasis-desert transition zone at night, which is beneficial for plants in the transition region
Paleozoic structural and geodynamic evolution of eastern Tianshan (NW China): welding of the Tarim and Junggar plates
to cite the paper EPISODES Volume: 30 Issue: 3 Pages: 162-186 Published: September, 2007International audienceChinese East Tianshan is a key area for understanding the Paleozoic accretion of the southern Central Asian Orogenic Belt. A first accretion-collision stage, before the Visean, developed the Eo-Tianshan range, which exhibits north-verging structures. The geodynamic evolution included: i) Ordovician-Early Devonian southward subduction of a Central Tianshan ocean beneath a Central Tianshan arc; ii) Devonian oceanic closure and collision between Central Tianshan arc and Yili-North Tianshan block, along the Central Tianshan Suture Zone; iii) Late Devonian-earliest Carboniferous closure of a South Tianshan back-arc basin, and subsequent Central Tianshan-Tarim active margin collision along the South Tianshan Suture Zone. A second stage involved: i) Late Devonian-Carboniferous southward subduction of North Tianshan ocean beneath the Eo-Tianshan active margin (Yili-North Tianshan arc); ii) Late Carboniferous-Early Permian North Tianshan-Junggar collision. The Harlike range, unit of Mongolian Fold Belt, collided with Junggar at Mid- Carboniferous, ending a north-dipping subduction. The last CAOB oceanic suture is likely the North Tianshan Suture Zone, between Yili-North Tianshan and Junggar. During the Permian, all the already welded units suffered from a major wrenching, dextral in Tianshan, sinistral in Mongolian Fold Belt, due to opposite motion of Siberia and Tarim
Russian wheat aphids (Diuraphis noxia) in China: Native range expansion or recent introduction?
In this study, we explore the population genetics of the Russian wheat aphid (RWA) (Diuraphis noxia), one of the world’s most invasive agricultural pests, in north-western China. We have analysed the data of 10 microsatellite loci and mitochondrial sequences from 27 populations sampled over 2 years in China. The results confirm that the RWAs are holocyclic in China with high genetic diversity indicating widespread sexual reproduction. Distinct differences in microsatellite genetic diversity and distribution revealed clear geographic isolation between RWA populations in northern and southern Xinjiang, China, with gene flow interrupted across extensive desert regions. Despite frequent grain transportation from north to south in this region, little evidence for RWA translocation as a result of human agricultural activities was found. Consequently, frequent gene flow among northern populations most likely resulted from natural dispersal, potentially facilitated by wind currents. We also found evidence for the longterm existence and expansion of RWAs in China, despite local opinion that it is an exotic species only present in China since 1975. Our estimated date of RWA expansion throughout China coincides with the debut of wheat domestication and cultivation practices in western Asia in the Holocene. We conclude that western China represents the limit of the far eastern native range of this species. This study is the most comprehensive molecular genetic investigation of the RWA in its native range undertaken to date and provides valuable insights into the history of the association of this aphid with domesticated cereals and wild grasses
Modeling the shortening history of a fault tip fold using structural and geomorphic records of deformation
We present a methodology to derive the growth history of a fault tip fold above a basal detachment. Our approach is based on modeling the stratigraphic and geomorphic records of deformation, as well as the finite structure of the fold constrained from seismic profiles. We parameterize the spatial deformation pattern using a simple formulation of the displacement field derived from sandbox experiments. Assuming a stationary spatial pattern of deformation, we simulate the gradual warping and uplift of stratigraphic and geomorphic markers, which provides an estimate of the cumulative amounts of shortening they have recorded. This approach allows modeling of isolated terraces or growth strata. We apply this method to the study of two fault tip folds in the Tien Shan, the Yakeng and Anjihai anticlines, documenting their deformation history over the past 6–7 Myr. We show that the modern shortening rates can be estimated from the width of the fold topography provided that the sedimentation rate is known, yielding respective rates of 2.15 and 1.12 mm/yr across Yakeng and Anjihai, consistent with the deformation recorded by fluvial and alluvial terraces. This study demonstrates that the shortening rates across both folds accelerated significantly since the onset of folding. It also illustrates the usefulness of a simple geometric folding model and highlights the importance of considering local interactions between tectonic deformation, sedimentation, and erosion
- …
