1,478 research outputs found

    An advanced tool for Preventive Voltage Security Assessment

    Full text link
    peer reviewedThis paper deals with methods for the preventive assessment of voltage security with respect to contingencies. We describe a computing tool for the determination of secure operation limits, together with methods for contingency filtering. Examples from two very different real-life systems are provided. We outline extensions in the field of preventive control

    Improving GPU Simulations of Spiking Neural P Systems

    Get PDF
    In this work we present further extensions and improvements of a Spiking Neural P system (for short, SNP systems) simulator on graphics processing units (for short, GPUs). Using previous results on representing SNP system computations using linear algebra, we analyze and implement a compu- tation simulation algorithm on the GPU. A two-level parallelism is introduced for the computation simulations. We also present a set of benchmark SNP sys- tems to stress test the simulation and show the increased performance obtained using GPUs over conventional CPUs. For a 16 neuron benchmark SNP system with 65536 nondeterministic rule selection choices, we report a 2.31 speedup of the GPU-based simulations over CPU-based simulations.Ministerio de Ciencia e Innovación TIN2009–13192Junta de Andalucía P08-TIC-0420

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    A Universal Framework for Accurate and Efficient Geometric Deep Learning of Molecular Systems

    Full text link
    Molecular sciences address a wide range of problems involving molecules of different types and sizes and their complexes. Recently, geometric deep learning, especially Graph Neural Networks, has shown promising performance in molecular science applications. However, most existing works often impose targeted inductive biases to a specific molecular system, and are inefficient when applied to macromolecules or large-scale tasks, thereby limiting their applications to many real-world problems. To address these challenges, we present PAMNet, a universal framework for accurately and efficiently learning the representations of three-dimensional (3D) molecules of varying sizes and types in any molecular system. Inspired by molecular mechanics, PAMNet induces a physics-informed bias to explicitly model local and non-local interactions and their combined effects. As a result, PAMNet can reduce expensive operations, making it time and memory efficient. In extensive benchmark studies, PAMNet outperforms state-of-the-art baselines regarding both accuracy and efficiency in three diverse learning tasks: small molecule properties, RNA 3D structures, and protein-ligand binding affinities. Our results highlight the potential for PAMNet in a broad range of molecular science applications.Comment: Published in Scientific Reports (DOI: 10.1038/s41598-023-46382-8

    FedPseudo: Pseudo value-based Deep Learning Models for Federated Survival Analysis

    Full text link
    Survival analysis, time-to-event analysis, is an important problem in healthcare since it has a wide-ranging impact on patients and palliative care. Many survival analysis methods have assumed that the survival data is centrally available either from one medical center or by data sharing from multi-centers. However, the sensitivity of the patient attributes and the strict privacy laws have increasingly forbidden sharing of healthcare data. To address this challenge, the research community has looked at the solution of decentralized training and sharing of model parameters using the Federated Learning (FL) paradigm. In this paper, we study the utilization of FL for performing survival analysis on distributed healthcare datasets. Recently, the popular Cox proportional hazard (CPH) models have been adapted for FL settings; however, due to its linearity and proportional hazards assumptions, CPH models result in suboptimal performance, especially for non-linear, non-iid, and heavily censored survival datasets. To overcome the challenges of existing federated survival analysis methods, we leverage the predictive accuracy of the deep learning models and the power of pseudo values to propose a first-of-its-kind, pseudo value-based deep learning model for federated survival analysis (FSA) called FedPseudo. Furthermore, we introduce a novel approach of deriving pseudo values for survival probability in the FL settings that speeds up the computation of pseudo values. Extensive experiments on synthetic and real-world datasets show that our pseudo valued-based FL framework achieves similar performance as the best centrally trained deep survival analysis model. Moreover, our proposed FL approach obtains the best results for various censoring settings

    Managing Household Waste through Transfer Learning

    Full text link
    As the world continues to face the challenges of climate change, it is crucial to consider the environmental impact of the technologies we use. In this study, we investigate the performance and computational carbon emissions of various transfer learning models for garbage classification. We examine the MobileNet, ResNet50, ResNet101, and EfficientNetV2S and EfficientNetV2M models. Our findings indicate that the EfficientNetV2 family achieves the highest accuracy, recall, f1-score, and IoU values. However, the EfficientNetV2M model requires more time and produces higher carbon emissions. ResNet50 outperforms ResNet110 in terms of accuracy, recall, f1-score, and IoU, but it has a larger carbon footprint. We conclude that EfficientNetV2S is the most sustainable and accurate model with 96.41% accuracy. Our research highlights the significance of considering the ecological impact of machine learning models in garbage classification.Comment: 11 pages, 9 figure

    Personalized Federated Learning with Multi-branch Architecture

    Full text link
    Federated learning (FL) is a decentralized machine learning technique that enables multiple clients to collaboratively train models without requiring clients to reveal their raw data to each other. Although traditional FL trains a single global model with average performance among clients, statistical data heterogeneity across clients has resulted in the development of personalized FL (PFL), which trains personalized models with good performance on each client's data. A key challenge with PFL is how to facilitate clients with similar data to collaborate more in a situation where each client has data from complex distribution and cannot determine one another's distribution. In this paper, we propose a new PFL method (pFedMB) using multi-branch architecture, which achieves personalization by splitting each layer of a neural network into multiple branches and assigning client-specific weights to each branch. We also design an aggregation method to improve the communication efficiency and the model performance, with which each branch is globally updated with weighted averaging by client-specific weights assigned to the branch. pFedMB is simple but effective in facilitating each client to share knowledge with similar clients by adjusting the weights assigned to each branch. We experimentally show that pFedMB performs better than the state-of-the-art PFL methods using the CIFAR10 and CIFAR100 datasets.Comment: Accepted by IJCNN 202

    Concurrent stochastic methods for global optimization

    Get PDF
    The global optimization problem, finding the lowest minimizer of a nonlinear function of several variables that has multiple local minimizers, appears well suited to concurrent computation. This paper presents a new parallel algorithm for the global optimization problem. The algorithm is a stochastic method related to the multi-level single-linkage methods of Rinnooy Kan and Timmer for sequential computers. Concurrency is achieved by partitioning the work of each of the three main parts of the algorithm, sampling, local minimization start point selection, and multiple local minimizations, among the processors. This parallelism is of a coarse grain type and is especially well suited to a local memory multiprocessing environment. The paper presents test results of a distributed implementation of this algorithm on a local area network of computer workstations. It also summarizes the theoretical properties of the algorithm

    A Finite-Horizon Approach to Active Level Set Estimation

    Full text link
    We consider the problem of active learning in the context of spatial sampling for level set estimation (LSE), where the goal is to localize all regions where a function of interest lies above/below a given threshold as quickly as possible. We present a finite-horizon search procedure to perform LSE in one dimension while optimally balancing both the final estimation error and the distance traveled for a fixed number of samples. A tuning parameter is used to trade off between the estimation accuracy and distance traveled. We show that the resulting optimization problem can be solved in closed form and that the resulting policy generalizes existing approaches to this problem. We then show how this approach can be used to perform level set estimation in higher dimensions under the popular Gaussian process model. Empirical results on synthetic data indicate that as the cost of travel increases, our method's ability to treat distance nonmyopically allows it to significantly improve on the state of the art. On real air quality data, our approach achieves roughly one fifth the estimation error at less than half the cost of competing algorithms

    Learning Early Detection of Emergencies from Word Usage Patterns on Social Media

    Get PDF
    In the early stages of an emergency, information extracted from social media can support crisis response with evidence-based content. In order to capture this evidence, the events of interest must be first promptly detected. An automated detection system is able to activate other tasks, such as preemptive data processing for extracting eventrelated information. In this paper, we extend the human-in-the-loop approach in our previous work, TriggerCit, with a machine-learning-based event detection system trained on word count time series and coupled with an automated lexicon building algorithm.We design this framework in a language-agnostic fashion. In this way, the system can be deployed to any language without substantial effort. We evaluate the capacity of the proposed work against authoritative flood data for Nepal recorded over two years
    corecore