893 research outputs found

    EXIT charts for system design and analysis

    No full text
    Near-capacity performance may be achieved with the aid of iterative decoding, where extrinsic soft information is exchanged between the constituent decoders in order to improve the attainable system performance. Extrinsic information Transfer (EXIT) charts constitute a powerful semi-analytical tool used for analysing and designing iteratively decoded systems. In this tutorial, we commence by providing a rudimentary overview of the iterative decoding principle and the concept of soft information exchange. We then elaborate on the concept of EXIT charts using three iteratively decoded prototype systems as design examples. We conclude by illustrating further applications of EXIT charts, including near-capacity designs, the concept of irregular codes and the design of modulation schemes

    Near-capacity iterative decoding of binary self-concatenated codes using soft decision demapping and 3-D EXIT charts

    No full text
    In this paper 3-D Extrinsic Information Transfer (EXIT) charts are used to design binary Self-Concatenated Convolutional Codes employing Iterative Decoding (SECCC-ID), exchanging extrinsic information with the soft-decision demapper to approach the channel capacity. Recursive Systematic Convolutional (RSC) codes are selected as constituent codes, an interleaver is used for randomising the extrinsic information exchange of the constituent codes, while a puncturer helps to increase the achievable bandwidth efficiency. The convergence behaviour of the decoder is analysed with the aid of bit-based 3-D EXIT charts, for accurately calculating the operating EbN0 threshold, especially when SP based soft demapper is employed. Finally, we propose an attractive system configuration, which is capable of operating within about 1 dB from the channel capacity

    Scattered EXIT Charts for Finite Length LDPC Code Design

    Full text link
    We introduce the Scattered Extrinsic Information Transfer (S-EXIT) chart as a tool for optimizing degree profiles of short length Low-Density Parity-Check (LDPC) codes under iterative decoding. As degree profile optimization is typically done in the asymptotic length regime, there is space for further improvement when considering the finite length behavior. We propose to consider the average extrinsic information as a random variable, exploiting its specific distribution properties for guiding code design. We explain, step-by-step, how to generate an S-EXIT chart for short-length LDPC codes. We show that this approach achieves gains in terms of bit error rate (BER) of 0.5 dB and 0.6 dB over the additive white Gaussian noise (AWGN) channel for codeword lengths of 128 and 180 bits, respectively, at a target BER of 10410^{-4} when compared to conventional Extrinsic Information Transfer (EXIT) chart-based optimization. Also, a performance gain for the Binary Erasure Channel (BEC) for a block (i.e., codeword) length of 180 bits is shown.Comment: in IEEE International Conference on Communications (ICC), May 201

    Near-Capacity Turbo Trellis Coded Modulation Design

    No full text
    Bandwidth efficient parallel-concatenated Turbo Trellis Coded Modulation (TTCM) schemes were designed for communicating over uncorrelated Rayleigh fading channels. A symbol-based union bound was derived for analysing the error floor of the proposed TTCM schemes. A pair of In-phase (I) and Quadrature-phase (Q) interleavers were employed for interleaving the I and Q components of the TTCM coded symbols, in order to attain an increased diversity gain. The decoding convergence of the IQ-TTCM schemes was analysed using symbol based EXtrinsic Information Transfer (EXIT) charts. The best TTCM component codes were selected with the aid of both the symbol-based union bound and non-binary EXIT charts for the sake of designing capacity-approaching IQ-TTCM schemes in the context of 8PSK, 16QAM and 32QAM signal sets. It will be shown that our TTCM design is capable of approaching the channel capacity within 0.5 dB at a throughput of 4 bit/s/Hz, when communicating over uncorrelated Rayleigh fading channels using 32QAM

    On the Computation of EXIT Characteristics for Symbol-Based Iterative Decoding

    No full text
    In this paper we propose an efficient method for computing index-based extrinsic information transfer (EXIT) charts, which are useful for estimating the convergence properties of non-binary iterative decoding. A standard method is to apply <i>a priori</i> reliability information to the <i>a posteriori</i> probability (APP) constituent decoder and compute the resulting average extrinsic information at the decoder output via multidimensional histogram measurements. However, this technique is only reasonable for very small index lengths as the complexity of this approach grows exponentially with the index length. We show that by averaging over a function of the extrinsic APPs for a long block the extrinsic information can be estimated with very low complexity. In contrast to using histogram measurements this method allows to generate EXIT charts even for larger index alphabets. Examples for a non-binary serial concatenated code and for turbo trellis-coded modulation, resp., demonstrate the capabilities of the proposed approach

    MIMO-aided near-capacity turbo transceivers: taxonomy and performance versus complexity

    No full text
    In this treatise, we firstly review the associated Multiple-Input Multiple-Output (MIMO) system theory and review the family of hard-decision and soft-decision based detection algorithms in the context of Spatial Division Multiplexing (SDM) systems. Our discussions culminate in the introduction of a range of powerful novel MIMO detectors, such as for example Markov Chain assisted Minimum Bit-Error Rate (MC-MBER) detectors, which are capable of reliably operating in the challenging high-importance rank-deficient scenarios, where there are more transmitters than receivers and hence the resultant channel-matrix becomes non-invertible. As a result, conventional detectors would exhibit a high residual error floor. We then invoke the Soft-Input Soft-Output (SISO) MIMO detectors for creating turbo-detected two- or three-stage concatenated SDM schemes and investigate their attainable performance in the light of their computational complexity. Finally, we introduce the powerful design tools of EXtrinsic Information Transfer (EXIT)-charts and characterize the achievable performance of the diverse near- capacity SISO detectors with the aid of EXIT charts

    EXIT-chart aided near-capacity quantum turbo code design

    No full text
    High detection complexity is the main impediment in future Gigabit-wireless systems. However, a quantum-based detector is capable of simultaneously detecting hundreds of user signals by virtue of its inherent parallel nature. This in turn requires near-capacity quantum error correction codes for protecting the constituent qubits of the quantum detector against the undesirable environmental decoherence. In this quest, we appropriately adapt the conventional non-binary EXtrinsic Information Transfer (EXIT) charts for quantum turbo codes by exploiting the intrinsic quantum-to-classical isomorphism. The EXIT chart analysis not only allows us to dispense with the time-consuming Monte-Carlo simulations, but also facilitates the design of near-capacity codes without resorting to the analysis of their distance spectra. We have demonstrated that our EXIT chart predictions are in line with the Monte-Carlo simulations results. We have also optimized the entanglement-assisted QTC using EXIT charts, which outperforms the existing distance spectra based QTCs. More explicitly, the performance of our optimized QTC is as close as 0.3 dB to the corresponding hashing bound
    corecore