5 research outputs found

    EXIT Chart Based Joint Code-Rate and Spreading-Factor Optimisation of Single-Carrier Interleave Division Multiple Access

    No full text
    Abstract—In this paper, we consider the joint code-rate and spreading-factor optimisation of turbo-style iterative joint detection and decoding assisted single-carrier interleave division multiple access (SC-IDMA) systems using different-rate convolutional codes and Extrinsic Information Transfer (EXIT) charts, when communicating over Additive White Gaussian Noise (AWGN) channels. More explicitly, we study the extrinsic information exchange between two serial concatenated components and maximise the number of users supported by the SC-IDMA system under the constraint of a fixed bandwidth expansion factor, while maintaining a predefined Bit Error Ratio (BER) versus Eb/N0 performance. We found that an optimum coderate and spreading-factor combination can be found for the SC-IDMA system at low Eb/N0 values, where maintaining a low BER inevitably requires the employment of channel coding. By contrast, at high Eb/N0 the system performs best, when no channel coding is used, i.e. DS-spreading is the only means of bandwidth expansion

    EXIT-charts-aided hybrid multiuser detector for multicarrier interleave-division multiple access

    Get PDF
    A generically applicable hybrid multiuser detector (MUD) concept is proposed by appropriately activating different MUDs in consecutive turbo iterations based on the mutual information (MI) gain. It is demonstrated that the proposed hybrid MUD is capable of approaching the optimal Bayesian MUD's performance despite its reduced complexity, which is at a modestly increased complexity in comparison with that of the suboptimum soft interference cancellation (SoIC) MU

    Application des méthodes d'estimation de canal autodidactes aux systèmes IDMA

    Get PDF
    corecore