2,286 research outputs found

    Transport of Water and Gases through EVA/PVC blend films – Permeation and DSC investigations.

    Get PDF
    The transport of water vapor and gases (oxygen and carbon dioxide) through poly(ethylene-co-vinyl acetate) (EVA) films of different VA content, poly(vinylchloride) (PVC) and EVA/PVC blend films, was analysed from permeation measurements. A plasticization effect of water on the material was observed for EVA films with more than 19% wt. of VA content and for the EVA/PVC blends, while for gas permeation practically all the experimental curves are characterized by a constant diffusion coefficient, whatever the VA content of the copolymer used. The increase in water absorption with the VA content leads to a steady increase in the water permeability of the EVA copolymers. By mixing the glassy PVC polymer with the EVA copolymer (in a rubbery state) reduced water and gas permeability is observed, resulting mainly from the decrease of the diffusivity due to the low segment mobility of the dense PVC material able to create hydrogen bonds between the hydrogen atoms and the Cl-substituted carbon of PVC with VA carbonyls. Compared to EVA copolymers, the EVA/PVC blends with equivalent VA contents are better in terms of selectivity

    Process monitoring and visualization solutions for hot-melt extrusion : a review

    Get PDF
    Objectives: Hot-melt extrusion (HME) is applied as a continuous pharmaceutical manufacturing process for the production of a variety of dosage forms and formulations. To ensure the continuity of this process, the quality of the extrudates must be assessed continuously during manufacturing. The objective of this review is to provide an overview and evaluation of the available process analytical techniques which can be applied in hot-melt extrusion. Key Findings: Pharmaceutical extruders are equipped with traditional (univariate) process monitoring tools, observing barrel and die temperatures, throughput, screw speed, torque, drive amperage, melt pressure and melt temperature. The relevance of several spectroscopic process analytical techniques for monitoring and control of pharmaceutical HME has been explored recently. Nevertheless, many other sensors visualizing HME and measuring diverse critical product and process parameters with potential use in pharmaceutical extrusion are available, and were thoroughly studied in polymer extrusion. The implementation of process analytical tools in HME serves two purposes: (1) improving process understanding by monitoring and visualizing the material behaviour and (2) monitoring and analysing critical product and process parameters for process control, allowing to maintain a desired process state and guaranteeing the quality of the end product. Summary: This review is the first to provide an evaluation of the process analytical tools applied for pharmaceutical HME monitoring and control, and discusses techniques that have been used in polymer extrusion having potential for monitoring and control of pharmaceutical HME

    The fire retardant effects of huntite in natural mixtures with hydromagnesite

    Get PDF
    The fire retardant effects of natural mixtures of huntite and hydromagnesite have been investigated. As well as being entirely natural these mixtures of minerals can be considered “greener” and more environmentally friendly, in their production methods, than alternatives such as aluminium hydroxide and magnesium hydroxide. It has been shown that the release of water and carbon dioxide from hydromagnesite helps to increase the time to ignition and peak heat release in cone calorimeter testing. Huntite has been shown to decrease the average rate of heat release and increase the strength of the residue. Electron microscopy has shown that the huntite particles maintain their platy morphology during combustion in the cone calorimeter. The morphology of these particles helps to reduce the rate of heat release by slowing the release of flammable decomposition products to the flame. The platy shape of the huntite particles increases the strength of the residue containing higher proportions of this mineral. Huntite is shown to play an active part in improving fire retardancy when used in a mixture with hydromagnesite, giving performance for typical mixtures comparable to those of aluminium hydroxide

    Dynamic Mechanical and Gel Content Properties of Irradiated ENR/PVC Blends with TiO2 Nanofillers

    Full text link
    Numerous studies reported on irradiated epoxidized natural rubber/polyvinyl chloride (ENR/PVC) blends and the blends were found miscible at all compositional range thus it offers a broad of opportunity in modifying the blend characteristic. Addition of low loading titanium dioxide (TiO2) nanofillers in the ENR/PVC blends has shown a remarkable increment in tensile strength. Thus, this study was initiated to address the effect of TiO2 nanofillers on ENR/PVC blends dynamic mechanical and gel content properties and its morphology upon exposure to electron beam irradiation. ENR/PVC blends with addition of 0, 2 and 6 phr TiO2 nanofillers were first blended in a mixing chamber before being irradiated by an electron beam accelerator at different 0-200 kGy irradiation doses. The influence of TiO2 nanofillers on the irradiation crosslinking of ENR/PVC blends was study based on the dynamic mechanical analysis which was carried out in determining the glass transition temperature and the storage modulus behavior of ENR/PVC blends incorporated with TiO2 nanofillers. Formations of irradiation crosslinking in the blend were investigated by gel content measurement. While, the TiO2 nanofillers distribution were examined by Transmission Electron Microscope (TEM). Upon irradiation, the ENR/PVC/6 phr TiO2 formed the highest value of gel fraction. For dynamic mechanical analysis, it was found that electron beam radiation increased the Tg of all the compositions. The relationship between the crosslinking and the stiffness of the nanocomposites also can be found in this study. The enhancement in the storage modulus and Tg at higher amount of TiO2 in the blend could be correlated to the enhancement of the irradiation-induced crosslinking in the nanocomposites characteristic and also with the higher agglomerations of TiO2 evidence shown from the TEM micrograph examination. Lastly, the dimensions of TiO2 in the blends were found less than 100 nm in diameter which indicates incorporation of TiO2 nanofillers in ENR/PVC blends is potentially to provide the nanocomposites features. Doi: 10.12777/ijse.6.1.24-30 [How to cite this article: Ramlee, N.A., Ratnam, C.T., Alias, N.H., Rahman, M.F.A.. 2014. Dynamic Mechanical and Gel Content Properties of Irradiated ENR/PVC blends with TiO2 Nanofillers. International Journal of Science and Engineering, 6(1),24-30. Doi: 10.12777/ijse.6.1.24-30

    Fire retardant action of mineral fillers

    Get PDF
    Endothermically decomposing mineral fillers, such as aluminium or magnesium hydroxide, magnesium carbonate, or mixed magnesium/calcium carbonates and hydroxides, such as naturally occurring mixtures of huntite and hydromagnesite are in heavy demand as sustainable, environmentally benign fire retardants. They are more difficult to deploy than the halogenated flame retardants they are replacing, as their modes of action are more complex, and are not equally effective in different polymers. In addition to their presence (at levels up to 70%), reducing the flammable content of the material, they have three quantifiable fire retardant effects: heat absorption through endothermic decomposition; increased heat capacity of the polymer residue; increased heat capacity of the gas phase through the presence of water or carbon dioxide. These three contributions have been quantified for eight of the most common fire retardant mineral fillers, and the effects on standard fire tests such as the LOI, UL 94 and cone calorimeter discussed. By quantifying these estimable contributions, more subtle effects, which they might otherwise mask, may be identified

    Polymer/montmorillonite nanocomposites with improved thermal properties: Part II. Thermal stability of montmorillonite nanocomposites based on different polymeric matrixes.

    Get PDF
    In previous part of this work factors influencing the thermal stability of polymer nanocomposite materials were indicated, such as chemical constitution of organic modifier, filler content, nanocomposites’ structure and the processing- dependent degree of homogenization of nanofiller, were presented. In this part the basic changes in thermal behaviour of different polymeric matrixes (e.g. polyolefins, polyamides, poly(vinyl chloride) and styrene-containing polymers) upon addition of montmorillonite have been described. Brief description of the kinetics of the decomposition process in inert and oxidative environment, as well as analysis of volatile and condensed products of degradation, have also been present

    Wood polymer composites and their contribution to cascading utilisation

    Get PDF
    Due to a shortage of resources and a growing competition of land use, sustainable and efficient resource utilisation becomes increasingly important. The application and multiple, cascading utilisation of renewable resources is aimed at to ensure an allocation and future availability of resources. Wood polymer composites (WPCs) are a group of innovative materials consisting of mainly renewable resources. By means of summarizing recent research, it is shown how WPC can potentially contribute to an enhanced cascading utilisation. For the production of WPC, waste materials and by-products from wood and agricultural industry, e.g. offcuts, sawdust, residues from board manufacturing, pulping sludge, can serve as a raw material. Furthermore, the cited literature presents the use of recycled polymers and biopolymers as a potential alternative for the polymer component of WPC. By using biodegradable polymers, a fully biodegradable composite can be formed. In addition to using recycled materials and potentially being biodegradable, it is pointed out that WPC furthermore offers the possibility of being recycled itself, therefore being considered as a “green composite”. Although the influence of contaminated waste streams and mixed filler and polymer types on the properties of WPC made with such recyclates is yet not fully understood and no collection systems exist for post-consumer WPC, in-house recycling on the production sites is identified as a promising option as it reduces production costs and enhances resource efficiency and cascading utilisation. On the basis of cited life cycle assessments, the eco friendliness of WPC is assessed resulting in the conclusion that WPC cannot compete with solid wood with respect to environmental impact but is an environmentally friendly alternative to neat plastics in several applications

    Características dieléctricas de diversos polímeros (PVC, EVA, HDPE, y PP) reforzados con neumáticos fuera de uso (GTR)

    Get PDF
    La masiva fabricación de neumáticos y la dificultad para su almacenamiento o eliminación constituye un grave problema medioambiental. En la actualidad, se utilizan diversos metodos para el reciclaje de los neumáticos, como por ejemplo la trituración mecánica, que separa el caucho vulcanizado del acero y las fibras, utilizandose este caucho en numerosas aplicaciones industriales como pavimentos, aislantes, calzados, etc. El presente artículo se centra en buscar una nueva aplicación para estos neumáaticos reutilizados (GTR), y para ello, se ha mezclado el polvo de los neumáticos con diferentes polímeros termoplásticos como son el Policloruro de Vinilo (PVC), el Polietileno de Alta Densidad (HDPE), el Etileno Acetato de Vinilo (EVA) y el Polipropileno (PP), comprobando hasta que valores de concentracion en GTR admitenestos nuevos compuestos manteniendo dentro de unos valores aceptables sus propiedades dielectricas, y por tanto, sus posibles aplicaciones industriales en la fabricación de aislantes para cables eléctricos. Concretamente, el polvo de los neumáticos reutilizados y con un tamaño de partícula inferior a 200 μm, ha sido mezclado con los polímeros con cuatro concentraciones diferentes, 5%, 10%, 20% y 50% en GTR para asi determinar su comportamiento mediante los ensayos dieléctricos realizados en un rango de temperaturas que varia desde los 30oC hasta los 120oC, y con unas frecuencias entre 1・10  -2 Hz, hasta 3・10  6Hz, analizandose la conductividad, la permitividad, el factor de perdidas dieléctricas, las relajaciones, etc. Finalmente, las superficies de fractura de las muestras compuestas han sido evaluadas por microscopía electronicade barrido (SEM)

    Sifat Fisika Dan Morfologi Nanokomposit ABS/PC Dengan Filler Nano Precipitated Calcium Carbonate (NPCC)

    Get PDF
    The purpose of this research was to study the effect of blend ratios of acrylonitrile butadiene styrene (ABS) and polycarbonate (PC) in the different amount of nanoprecipitated calcium carbonate (NPCC) on the physical properties of ABS/PC nanocomposites. Nanocomposites were prepared in varied ratio of ABS/PC 100/0; 90/10; 80/20; 70/30 and varied amount of NPCC 0; 2.5; and 5 phr (per hundred resin), Nanocomposites were made by melt compounding in the Laboplastomill internal mixer at 200°C for 10 minutes. The SEM micrographs showed homogeneous dispersion of the nanocomposite materials and did not show aglomeration of NPCC. The best nanocomposite was a nanocomposite containing the ABS/PC 90/10 with NPCC 2.5 phr perfomed with impact resistance 5030 J/m2, tensile strength 380.14 kg/cm2, elongation at break 3.59%, density 1.16 g/cm3, and hardness 85 Shore D

    Miscibility of Poly(Vinyl Chloride) with Poly(Ethylene Oxide) of Different Molecular Weights

    Get PDF
    In this work, five different techniques: dilute solution viscometry, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), Fourier transform infrared spectroscopy (FT-IR), and scanning electronic microscopy (SEM) were employed in order to evaluate interactions of amorphous poly(vinyl chloride) (PVC) and semi-crystalline poly(ethylene oxide) (PEO) in solution and solid state. The results varied significantly from one experimental technique to another. The positive interactions between the investigated polymers were found over the whole composition range only in solution. However, in the solid state, by DSC and DMA analysis, the positive interactions were found only at elevated PVC content, while FT-IR and SEM analysis could not confirm interactions between the investigated polymers
    corecore