291,993 research outputs found

    Learning Geometric Concepts with Nasty Noise

    Full text link
    We study the efficient learnability of geometric concept classes - specifically, low-degree polynomial threshold functions (PTFs) and intersections of halfspaces - when a fraction of the data is adversarially corrupted. We give the first polynomial-time PAC learning algorithms for these concept classes with dimension-independent error guarantees in the presence of nasty noise under the Gaussian distribution. In the nasty noise model, an omniscient adversary can arbitrarily corrupt a small fraction of both the unlabeled data points and their labels. This model generalizes well-studied noise models, including the malicious noise model and the agnostic (adversarial label noise) model. Prior to our work, the only concept class for which efficient malicious learning algorithms were known was the class of origin-centered halfspaces. Specifically, our robust learning algorithm for low-degree PTFs succeeds under a number of tame distributions -- including the Gaussian distribution and, more generally, any log-concave distribution with (approximately) known low-degree moments. For LTFs under the Gaussian distribution, we give a polynomial-time algorithm that achieves error O(ϵ)O(\epsilon), where ϵ\epsilon is the noise rate. At the core of our PAC learning results is an efficient algorithm to approximate the low-degree Chow-parameters of any bounded function in the presence of nasty noise. To achieve this, we employ an iterative spectral method for outlier detection and removal, inspired by recent work in robust unsupervised learning. Our aforementioned algorithm succeeds for a range of distributions satisfying mild concentration bounds and moment assumptions. The correctness of our robust learning algorithm for intersections of halfspaces makes essential use of a novel robust inverse independence lemma that may be of broader interest

    Hybrid Shrinkage Estimators Using Penalty Bases For The Ordinal One-Way Layout

    Full text link
    This paper constructs improved estimators of the means in the Gaussian saturated one-way layout with an ordinal factor. The least squares estimator for the mean vector in this saturated model is usually inadmissible. The hybrid shrinkage estimators of this paper exploit the possibility of slow variation in the dependence of the means on the ordered factor levels but do not assume it and respond well to faster variation if present. To motivate the development, candidate penalized least squares (PLS) estimators for the mean vector of a one-way layout are represented as shrinkage estimators relative to the penalty basis for the regression space. This canonical representation suggests further classes of candidate estimators for the unknown means: monotone shrinkage (MS) estimators or soft-thresholding (ST) estimators or, most generally, hybrid shrinkage (HS) estimators that combine the preceding two strategies. Adaptation selects the estimator within a candidate class that minimizes estimated risk. Under the Gaussian saturated one-way layout model, such adaptive estimators minimize risk asymptotically over the class of candidate estimators as the number of factor levels tends to infinity. Thereby, adaptive HS estimators asymptotically dominate adaptive MS and adaptive ST estimators as well as the least squares estimator. Local annihilators of polynomials, among them difference operators, generate penalty bases suitable for a range of numerical examples.Comment: Published at http://dx.doi.org/10.1214/009053604000000652 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Depth weighted scatter estimators

    Full text link
    General depth weighted scatter estimators are introduced and investigated. For general depth functions, we find out that these affine equivariant scatter estimators are Fisher consistent and unbiased for a wide range of multivariate distributions, and show that the sample scatter estimators are strong and \sqrtn-consistent and asymptotically normal, and the influence functions of the estimators exist and are bounded in general. We then concentrate on a specific case of the general depth weighted scatter estimators, the projection depth weighted scatter estimators, which include as a special case the well-known Stahel-Donoho scatter estimator whose limiting distribution has long been open until this paper. Large sample behavior, including consistency and asymptotic normality, and efficiency and finite sample behavior, including breakdown point and relative efficiency of the sample projection depth weighted scatter estimators, are thoroughly investigated. The influence function and the maximum bias of the projection depth weighted scatter estimators are derived and examined. Unlike typical high-breakdown competitors, the projection depth weighted scatter estimators can integrate high breakdown point and high efficiency while enjoying a bounded-influence function and a moderate maximum bias curve. Comparisons with leading estimators on asymptotic relative efficiency and gross error sensitivity reveal that the projection depth weighted scatter estimators behave very well overall and, consequently, represent very favorable choices of affine equivariant multivariate scatter estimators.Comment: Published at http://dx.doi.org/10.1214/009053604000000922 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Symmetry, regression design, and sampling distributions

    Get PDF
    When values of regressors are symmetrically disposed, many M-estimators in a wide class of models have a reflection property, namely, that as the signs of the coefficients on regressors are reversed, their estimators' sampling distribution is reflected about the origin. When the coefficients are zero, sign reversal can have no effect. So in this case, the sampling distribution of regression coefficient estimators is symmetric about zero, the estimators are median unbiased and, when moments exist, the estimators are exactly uncorrelated with estimators of other parameters. The result is unusual in that it does not require response variates to have symmetric conditional distributions. It demonstrates the potential importance of covariate design in determining the distributions of estimators, and it is useful in designing and interpreting Monte Carlo experiments. The result is illustrated by a Monte Carlo experiment in which maximum likelihood and symmetrically censored least-squares estimators are calculated for small samples from a censored normal linear regression, Tobit, model. © 1994, Cambridge University Press. All rights reserved
    • …
    corecore