176,013 research outputs found

    Numerical analysis of second harmonic generation in soft glass equiangular spiral photonic crystal fibers

    Get PDF
    In this paper, the accurate and numerically efficient finite element (FE)-based beam propagation method (BPM) has been employed to investigate second harmonic generation (SHG) in highly nonlinear soft glass (SF57) equiangular spiral photonic crystal fibers (ES-PCFs) for the first time. It is shown here that the SHG output power in highly nonlinear SF57 soft glass PCF exploiting the ES design is significantly higher compared with that of silica PCF with hexagonal air-hole arrangements. The effects of fabrication tolerances on the coherence length and the modal properties of ES-PCF are also illustrated. Moreover, phase matching between the fundamental and the second harmonic modes is discussed through the use of the quasi-phase matching technique. Furthermore, the ultralow bending loss in the SF57 ES-PCF design has been successfully analyzed

    Analytical Parametric Model Used to Study the Influence of Electrostatic Force on Surface Coverage During Electrospinning of Polymer Fibers

    Get PDF
    Electrospinning (ES) can readily produce polymer fibers with cross-sectional dimensions ranging from tens of nanometers to tens of microns. Qualitative estimates of surface area coverage are rather intuitive. However, quantitative analytical and numerical methods for predicting surface coverage during ES have not been covered in sufficient depth to be applied in the design of novel materials, surfaces, and devices from ES fibers. This article presents a modeling approach to ES surface coverage where an analytical model is derived for use in quantitative prediction of surface coverage of ES fibers. The analytical model is used to predict the diameter of circular deposition areas of constant field strength and constant electrostatic force. Experimental results of polyvinyl alcohol fibers are reported and compared to numerical models to supplement the analytical model derived. The analytical model provides scientists and engineers a method for estimating surface area coverage. Both applied voltage and capillary-to-collection-plate separation are treated as independent variables for the analysis. The electric field produced by the ES process was modeled using COMSOL Multiphysics software to determine a correlation between the applied field strength and the size of the deposition area of the ES fibers. MATLAB scripts were utilized to combine the numerical COMSOL results with derived analytical equations. Experimental results reinforce the parametric trends produced via modeling and lend credibility to the use of modeling techniques for the qualitative prediction of surface area coverage from ES. (Copyright: 2014 American Vacuum Society.

    Diamond chemical vapor deposition on optical fibers for fluorescence waveguiding

    Full text link
    A technique has been developed for depositing diamond crystals on the endfaces of optical fibers and capturing the fluorescence generated by optically active defects in the diamond into the fiber. This letter details the diamond growth on optical fibers and transmission of fluorescence through the fiber from the nitrogen-vacancy (N-V) color center in diamond. Control of the concentration of defects incorporated during the chemical vapor deposition (CVD) growth process is also demonstrated. These are the first critical steps in developing a fiber coupled single photon source based on optically active defect centers in diamond.Comment: 10 pages, 3 figure

    The mechano-chemistry of cytoskeletal force generation

    Full text link
    In this communication, we propose a model to study the non-equilibrium process by which actin stress fibers develop force in contractile cells. The emphasis here is on the non-equilibrium thermodynamics, which is necessary to address the mechanics as well as the chemistry of dynamic cell contractility. In this setting we are able to develop a framework that relates (a) the dynamics of force generation within the cell and (b) the cell response to external stimuli to the chemical processes occurring within the cell, as well as to the mechanics of linkage between the stress fibers, focal adhesions and extra-cellular matrix.Comment: 22 pages, 6 figures, 1 table, accepted in Biomechanics and Modeling in Mechanobiolog

    Foam-like compression behavior of fibrin networks

    Get PDF
    The rheological properties of fibrin networks have been of long-standing interest. As such there is a wealth of studies of their shear and tensile responses, but their compressive behavior remains unexplored. Here, by characterization of the network structure with synchronous measurement of the fibrin storage and loss moduli at increasing degrees of compression, we show that the compressive behavior of fibrin networks is similar to that of cellular solids. A non-linear stress-strain response of fibrin consists of three regimes: 1) an initial linear regime, in which most fibers are straight, 2) a plateau regime, in which more and more fibers buckle and collapse, and 3) a markedly non-linear regime, in which network densification occurs {{by bending of buckled fibers}} and inter-fiber contacts. Importantly, the spatially non-uniform network deformation included formation of a moving "compression front" along the axis of strain, which segregated the fibrin network into compartments with different fiber densities and structure. The Young's modulus of the linear phase depends quadratically on the fibrin volume fraction while that in the densified phase depends cubically on it. The viscoelastic plateau regime corresponds to a mixture of these two phases in which the fractions of the two phases change during compression. We model this regime using a continuum theory of phase transitions and analytically predict the storage and loss moduli which are in good agreement with the experimental data. Our work shows that fibrin networks are a member of a broad class of natural cellular materials which includes cancellous bone, wood and cork

    The Effects of Fiber Furnish on Physical Properties of Paper

    Get PDF
    This experiment was designed to determine the effects of fiber furnish on the physical properties of paper. To do this various pulps and combinations of these pulps were formed into handsheets and their physical properties determined. The tests performed on the handsheets were tear, fold, tensile, stretch and tensile energy absorption. The findings of this report indicates possibilities of a linear relationship between percent of pulp in a sheet and the fold and tensile. Stretch values increase by various degrees as more of the higher stretch fiber is added. The TEA follows the stretch values very closely
    corecore