85,960 research outputs found
Specific immunoassays confirm association of <i>Mycobacterium avium</i> subsp. <i>paratuberculosis</i> with type-1 but not type-2 diabetes mellitus
Background
Mycobacterium avium subspecies paratuberculosis (MAP) is a versatile pathogen with a broad host range. Its association with type-1 diabetes mellitus (T1DM) has been recently proposed. Rapid identification of infectious agents such as MAP in diabetic patients at the level of clinics might be helpful in deciphering the role of chronic bacterial infection in the development of autoimmune diseases such as T1DM.
Methodology/Principal Findings
We describe use of an ELISA method to identify live circulating MAP through the detection of a cell envelope protein, MptD by a specific M13 phage – fMptD. We also used another ELISA format to detect immune response to MptD peptide. Both the methods were tested with blood plasma obtained from T1DM, type-2 diabetes (T2DM) patients and non-diabetic controls. Our results demonstrate MptD and fMptD ELISA assays to be accurate and sensitive to detect MAP bacilli in a large fraction (47.3%) of T1DM patients as compared to non-diabetic controls (12.6%) and those with confirmed T2DM (7.7%). Comparative analysis of ELISA assays performed here with 3 other MAP antigen preparations, namely HbHA, Gsd and whole cell MAP lysates confirmed comparable sensitivity of the MptD peptide and the fMptD based ELISA assays. Moreover, we were successful in demonstrating positive bacterial culture in two of the clinical specimen derived from T1DM patients.
Conclusions and Significance
The MptD peptide/fMptD based ELISA or similar tests could be suggested as rapid and specific field level diagnostic tests for the identification of MAP in diabetic patients and for finding the explanations towards the occurrence of type-1 or type-2 diabetes in the light of an active infectious trigger
Direct replacement of antibodies with molecularly imprinted polymer (MIP) nanoparticles in ELISA - development of a novel assay for vancomycin
A simple and straightforward technique for coating microplate wells with molecularly imprinted polymer nanoparticles (nanoMIPs) to develop ELISA type assays is presented here for the first time. NanoMIPs were synthesized by a solid phase approach with immobilized vancomycin (template) and characterized using Biacore 3000, dynamic light scattering and electron microscopy. Immobilization, blocking and washing conditions were optimized in microplate format. The detection of vancomycin was achieved in competitive binding experiments with a HRP-vancomycin conjugate. The assay was capable of measuring vancomycin in buffer and in blood plasma within the range 0.001-70 nM with a detection limit of 0.0025 nM (2.5 pM). The sensitivity of the assay was three orders of magnitude better than a previously described ELISA based on antibodies. In these experiments nanoMIPs have shown high affinity and minimal interference from blood plasma components. Immobilized nanoMIPs were stored for 1 month at room temperature without any detrimental effects to their binding properties. The high affinity of nanoMIPs and the lack of a requirement for cold chain logistics make them an attractive alternative to traditional antibodies used in ELIS
Comparison of enzyme-linked immunosorbent assay, surface plasmon resonance and biolayer interferometry for screening of deoxynivalenol in wheat and wheat dust
A sample preparation method was developed for the screening of deoxynivalenol (DON) in wheat and wheat dust. Extraction was carried out with water and was successful due to the polar character of DON. For detection, an enzyme-linked immunosorbent assay (ELISA) was compared to the sensor-based techniques of surface plasmon resonance (SPR) and biolayer interferometry (BLI) in terms of sensitivity, affinity and matrix effect. The matrix effects from wheat and wheat dust using SPR were too high to further use this screenings method. The preferred ELISA and BLI methods were validated according to the criteria established in Commission Regulation 519/2014/EC and Commission Decision 2002/657/EC. A small survey was executed on 16 wheat lots and their corresponding dust samples using the validated ELISA method. A linear correlation (r = 0.889) was found for the DON concentration in dust versus the DON concentration in wheat (LOD wheat: 233 g/kg, LOD wheat dust: 458 g/kg)
Fv antibodies to aflatoxin B1 derived from a pre-immunized antibody phage display library system
The production and characterization of recombinant antibodies to aflatoxin B[SUB1] (AFB[SUB1]), a potent mycotoxin and carcinogen is described. The antibody fragments produced were then applied for use in a surface plasmon resonance-based biosensor (BIAcore), which measures biomolecular interactions in 'real-time'. Single chain Fv (scFv) antibodies were generated to aflatoxin B1 from an established phage display system, which incorporated a range of different plasmids for efficient scFv expression. The scFv's were used in the development of a competitive ELISA, and also for the development of surface plasmon resonance (SPR)-based inhibition immunoassays. They were found to be suitable for the detection of AFB[SUB1], in this format, with the assays being sensitive and reproducible
Description of a nanobody-based competitive immunoassay to detect tsetse fly exposure
Background : Tsetse flies are the main vectors of human and animal African trypanosomes. The Tsal proteins in tsetse fly saliva were previously identified as suitable biomarkers of bite exposure. A new competitive assay was conceived based on nanobody (Nb) technology to ameliorate the detection of anti-Tsal antibodies in mammalian hosts.
Methodology/Principal Findings : A camelid-derived Nb library was generated against the Glossina morsitans morsitans sialome and exploited to select Tsal specific Nbs. One of the three identified Nb families (family III, TsalNb-05 and TsalNb-11) was found suitable for anti-Tsal antibody detection in a competitive ELISA format. The competitive ELISA was able to detect exposure to a broad range of tsetse species (G. morsitans morsitans, G. pallidipes, G. palpalis gambiensis and G. fuscipes) and did not cross-react with the other hematophagous insects (Stomoxys calcitrans and Tabanus yao). Using a collection of plasmas from tsetse-exposed pigs, the new test characteristics were compared with those of the previously described G. m. moristans and rTsal1 indirect ELISAs, revealing equally good specificities (> 95%) and positive predictive values (> 98%) but higher negative predictive values and hence increased sensitivity (> 95%) and accuracy (> 95%).
Conclusion/Significance : We have developed a highly accurate Nb-based competitive immunoassay to detect specific anti-Tsal antibodies induced by various tsetse fly species in a range of hosts. We propose that this competitive assay provides a simple serological indicator of tsetse fly presence without the requirement of test adaptation to the vertebrate host species. In addition, the use of monoclonal Nbs for antibody detection is innovative and could be applied to other tsetse fly salivary biomarkers in order to achieve a multi-target immunoprofiling of hosts. In addition, this approach could be broadened to other pathogenic organisms for which accurate serological diagnosis remains a bottleneck
Development and optimization of a miniaturized western blot-based screening platform to identify regulators of post-translational modifications
Post-translational modifications (PTMs) are fundamental traits of protein functionality and their study has been addressed using several approaches over the past years. However, screening methods developed to detect regulators of PTMs imply many challenges and are usually based on expensive techniques. Herein, we described the development and optimization of a western blot-based platform for identification of regulators of a specific PTM—mono-ubiquitylation of proliferating cell nuclear antigen (PCNA). This cell-based method does not require specific equipment, apart from the basic western blot (WB) devices and minor accessories, which are accessible for most research labs. The modifications introduced to the classical WB protocol allow the performance of PTM analysis from a single well of a 96-well plate with minimal sample manipulation and low intra- and inter-plate variability, making this method ideal to screen arrayed compound libraries in a 96-well format. As such, our experimental pipeline provides the proof of concept to design small screenings of PTM regulators by improving the quantitative accuracy and throughput capacity of classical western blots.Fil: Villafañez, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Gottifredi, Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Soria, Ramiro Gaston. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentin
Optimisation of the enzyme-linked lectin assay for enhanced glycoprotein and glycoconjugate analysis
Lectin’s are proteins capable of recognising and binding to specific oligosaccharide tructures found on glycoproteins and other biomoloecules. As such they have found tility for glycoanalytical applications. One common difficulty encountered in the pplication of these proteins, particularly in multi-well plate assay formats known as Enzyme Linked Lectin Assays (ELLA’s), is in finding appropriate blocking solutions to prevent non-specific binding with plate surfaces. Many commonly used blocking agents contain carbohydrates and generate significant background signals in ELLA’s, limiting the utility of the assay.
In this study we examined the suitability of a range of blocking reagents, including rotein based, synthetic and commercially available carbohydrate free blocking eagents, for ELLA applications. Each blocking reagent was assessed against a panel f 19 commercially available biotinylated lectins exhibiting diverse structures and arbohydrate specificities. We identified the synthetic polymer Polyvinyl Alcohol PVA) as the best global blocking agent for performing ELLA’s. We ultimately present n ELLA methodology facilitating broad spectrum lectin analysis of glycoconjugates nd extending the utility of the ELLA
Measurement of circulating filarial antigen levels in human blood with a point-of-care test strip and a portable spectrodensitometer
The Alere Filariasis Test Strip (FTS) is a qualitative, point-of-care diagnostic tool that detects Wuchereria bancrofti circulating filarial antigen (CFA) in human blood, serum, or plasma. The Global Program to Eliminate Lymphatic Filariasis employs the FTS for mapping filariasis-endemic areas and assessing the success of elimination efforts. The objective of this study was to explore the relationship between the intensity of positive test lines obtained by FTS with CFA levels as determined by enzyme-linked immunosorbent assay (ELISA) with blood and plasma samples from 188 individuals who live in a filariasis-endemic area. The intensity of the FTS test line was assessed visually to provide a semiquantitative score (visual Filariasis Test Strip [vFTS]), and line intensity was measured with a portable spectrodensitometer (quantitative Filariasis Test Strip [gFTS]). These results were compared with antigen levels measured by ELISA in plasma from the same subjects. qFTS measurements were highly correlated with vFTS scores (p = 0.94; P < 0.001) and with plasma CFA levels (p = 0.91; P < 0.001). Thus, qFTS assessment is a convenient method for quantifying W bancrofti CFA levels in human blood, which are correlated with adult worm burdens. This tool may be useful for assessing the impact of treatment on adult filarial worms in individuals and communities
A New ELISA Using the ANANAS Technology Showing High Sensitivity to diagnose the Bovine Rhinotracheitis from Individual Sera to Pooled Milk
Diagnostic tests for veterinary surveillance programs should be efficient, easy to use and, possibly, economical. In this context, classic Enzyme linked ImmunoSorbent Assay (ELISA) remains the most common analytical platform employed for serological analyses. The analysis of pooled samples instead of individual ones is a common procedure that permits to certify, with one single test, entire herds as "disease-free". However, diagnostic tests for pooled samples need to be particularly sensitive, especially when the levels of disease markers are low, as in the case of anti-BoHV1 antibodies in milk as markers of Infectious Bovine Rhinotracheitis (IBR) disease. The avidin-nucleic-acid-nanoassembly (ANANAS) is a novel kind of signal amplification platform for immunodiagnostics based on colloidal poly-avidin nanoparticles that, using model analytes, was shown to strongly increase ELISA test performance as compared to monomeric avidin. Here, for the first time, we applied the ANANAS reagent integration in a real diagnostic context. The monoclonal 1G10 anti-bovine IgG1 antibody was biotinylated and integrated with the ANANAS reagents for indirect IBR diagnosis from pooled milk mimicking tank samples from herds with IBR prevalence between 1 to 8%. The sensitivity and specificity of the ANANAS integrated method was compared to that of a classic test based on the same 1G10 antibody directly linked to horseradish peroxidase, and a commercial IDEXX kit recently introduced in the market. ANANAS integration increased by 5-fold the sensitivity of the 1G10 mAb-based conventional ELISA without loosing specificity. When compared to the commercial kit, the 1G10-ANANAS integrated method was capable to detect the presence of anti-BHV1 antibodies from bulk milk of gE antibody positive animals with 2-fold higher sensitivity and similar specificity. The results demonstrate the potentials of this new amplification technology, which permits improving current classic ELISA sensitivity limits without the need for new hardware investments
- …
