847,499 research outputs found
Fundamental electrode kinetics
Report presents the fundamentals of electrode kinetics and the methods used in evaluating the characteristic parameters of rapid-charge transfer processes at electrode-electrolyte interfaces. The concept of electrode kinetics is outlined, followed by the principles underlying the experimental techniques for the investigation of electrode kinetics
Oxygen transport and transfer properties of erbia-stabilized bismuth oxide
The electrode resistances of solid solutions of 75 mol% Bi2O3−25 mol% Er2O3 with sputtered and with copressed gold gauze electrodes were compared. In contrast with literature no enhancement of the electrode process could be observed for the copressed electrodes. The measurements show an oxygen partial pressure dependence of power−0.5 for the electrode resistance. Additionally 18O2 exchange results also point to a low oxygen coverage and dissociative adsorption of oxygen. The electrode surface contributes significantly to the electrode process
Influence of normal and radial contributions of local current density on local electrochemical impedance spectroscopy.
A new tri-electrode probe is presented and applied to local electrochemical impedance spectroscopy (LEIS) measurements. As opposed to two-probe systems, the three-probe one allows measurement not only of normal, but also of radial contributions of local current densities to the local impedance values. The results concerning the cases of the blocking electrode and the electrode with faradaic reaction are discussed from the theoretical point of view for a disk electrode. Numerical simulations and experimental results are compared for the case of the ferri/ferrocyanide electrode reaction at the Pt working electrode disk. At the centre of the disk, the impedance taking into account both normal and radial contributions was in good agreement with the local impedance measured in terms of only the normal contribution. At the periphery of the electrode, the impedance taking into account both normal and radial contributions differed significantly from the local impedance measured in terms of only the normal contribution. The radial impedance results at the periphery of the electrode are in good agreement with the usual explanation that the associated larger current density is attributed to the geometry of the electrode, which exhibits a greater accessibility at the electrode edge
Factors Affecting Nickel-oxide Electrode Capacity in Nickel-hydrogen Cells
The nickel-oxide electrode common to the nickel hydrogen and nickel cadmium cell is by design the limiting or capacity determining electrode on both charge and discharge. The useable discharge capacity from this electrode, and since it is the limiting electrode, the useable discharge capacity of the cell as well, can and is optimized by rate of charge, charge temperature and additives to electrode and electrolyte. Recent tests with nickel hydrogen cells and tests performed almost 25 years ago with nickel cadmium cells indicate an improvement of capacity as a result of using increased electrolyte concentration
Multistage depressed collector for dual mode operation
A depressed collector which captures the spent electrons of a microwave transmitting tube at high efficiency in both high and low power modes of operation is described. The collector comprises entrance and end electrodes, the end electrode having a spike extending toward entrance electrode. Intermediate electrodes and the entrance electrode each have a central aperture and, together, these electrodes capture most high power mode spent electrons. The apertures of the electrodes increase in size in a downstream direction. To capture low power mode spent electrons a low power mode electrode is positioned between the last intermediate electrode and the end electrode. This electrode has a central aperture preferably smaller but no larger than that of the last intermediate electrode. An auxiliary low power mode electrode may be added having a central aperture larger than that of the low power mode electrode. All of the electrodes are at voltages provided by a voltage divider connected between a potential
Evaluation of Constant Potential Method in Simulating Electric Double-Layer Capacitors
A major challenge in the molecular simulation of electric double layer
capacitors (EDLCs) is the choice of an appropriate model for the electrode.
Typically, in such simulations the electrode surface is modeled using a uniform
fixed charge on each of the electrode atoms, which ignores the electrode
response to local charge fluctuations induced by charge fluctuations in the
electrolyte. In this work, we evaluate and compare this Fixed Charge Method
(FCM) with the more realistic Constant Potential Method (CPM), [Reed, et al.,
J. Chem. Phys., 126, 084704 (2007)], in which the electrode charges fluctuate
in order to maintain constant electric potential in each electrode. For this
comparison, we utilize a simplified LiClO-acetonitrile/graphite EDLC. At
low potential difference (), the two methods yield
essentially identical results for ion and solvent density profiles; however,
significant differences appear at higher . At ,
the CPM ion density profiles show significant enhancement (over FCM) of
"partially electrode solvated" Li ions very close to the electrode surface.
The ability of the CPM electrode to respond to local charge fluctuations in the
electrolyte is seen to significantly lower the energy (and barrier) for the
approach of Li ions to the electrode surface.Comment: Corrected typo
Dust particle charge in plasma with ion flow and electron depletion
The charge of micrometer-sized dust particles suspended in plasma above the
powered electrode of radio-frequency (RF) discharges is studied. Using a
self-consistent fluid model, the plasma profiles above the electrode are
calculated and the electron depletion towards the electrode, as well as the
increasing flow speed of ions towards the electrode, are considered in the
calculation of the dust particle floating potential. The results are compared
with those reported in literature and the importance of the spatial dust charge
variation is investigated
Study of the oxygen electrode reaction using mixed conducting oxide surface layers. Part I: Experimental methods and current-overvoltage experiments
The oxygen gas electrode has been studied for a number of mixed conducting oxide surface layers on top of Gd2Zr2O7 (TGZO) solid electrolytes. In part II of this paper we present the results of frequency dispersion measurements for the electrode reaction, supplying additional information to the results of current-overvoltage experiments presented in part I. For both kinds of experiments the same trends were observed for the electrode polarization. Best results are obtained for a surface layer of TGZO, while p-type mixed conducting oxides give less decreased values of the electrode polarization. High electrode capacitances were found in the case of mixed conducting surface layers (about 700 F/m2). The electrode reactions follow a Butler-Volmer type of equation. Most probably a diffusion process is rate controlling the overall charge transfer process
Electrical safety in spinal cord stimulation: current density analysis by computer modeling
The possibility of tissue damage in spinal cord stimulation was investigated in a computer modeling study. A decrease of the electrode area in monopolar stimulation resulted in an increase of the current density at the electrode surface. When comparing the modeling results with experimental data from literature, it was concluded that even with a small electrode area (0.7 mm2) tissue damage in spinal cord stimulation is improbabl
- …
