55,587 research outputs found
Construction of a Fish-like Robot Based on High Performance Graphene/PVDF Bimorph Actuation Materials.
Smart actuators have many potential applications in various areas, so the development of novel actuation materials, with facile fabricating methods and excellent performances, are still urgent needs. In this work, a novel electromechanical bimorph actuator constituted by a graphene layer and a PVDF layer, is fabricated through a simple yet versatile solution approach. The bimorph actuator can deflect toward the graphene side under electrical stimulus, due to the differences in coefficient of thermal expansion between the two layers and the converse piezoelectric effect and electrostrictive property of the PVDF layer. Under low voltage stimulus, the actuator (length: 20 mm, width: 3 mm) can generate large actuation motion with a maximum deflection of about 14.0 mm within 0.262 s and produce high actuation stress (more than 312.7 MPa/g). The bimorph actuator also can display reversible swing behavior with long cycle life under high frequencies. on this basis, a fish-like robot that can swim at the speed of 5.02 mm/s is designed and demonstrated. The designed graphene-PVDF bimorph actuator exhibits the overall novel performance compared with many other electromechanical avtuators, and may contribute to the practical actuation applications of graphene-based materials at a macro scale
Fabrication of Embedded Microvalve on PMMA Microfluidic Devices through Surface Functionalization
The integration of a PDMS membrane within orthogonally placed PMMA
microfluidic channels enables the pneumatic actuation of valves within bonded
PMMA-PDMS-PMMA multilayer devices. Here, surface functionalization of PMMA
substrates via acid catalyzed hydrolysis and air plasma corona treatment were
investigated as possible techniques to permanently bond PMMA microfluidic
channels to PDMS surfaces. FTIR and water contact angle analysis of
functionalized PMMA substrates showed that air plasma corona treatment was most
effective in inducing PMMA hydrophilicity. Subsequent fluidic tests showed that
air plasma modified and bonded PMMA multilayer devices could withstand fluid
pressure at an operational flow rate of 9 mircoliters/min. The pneumatic
actuation of the embedded PDMS membrane was observed through optical microscopy
and an electrical resistance based technique. PDMS membrane actuation occurred
at pneumatic pressures of as low as 10kPa and complete valving occurred at
14kPa for 100 micrometers x 100 micrometers channel cross-sections.Comment: Submitted on behalf of EDA Publishing Association
(http://irevues.inist.fr/handle/2042/16838
Trade-off analysis and design of a Hydraulic Energy Scavenger
In the last years there has been a growing interest in intelligent, autonomous devices for household applications. In the near future this technology will be part of our society; sensing and actuating will be integrated in the environment of our houses by means of energy scavengers and wireless microsystems. These systems will be capable of monitoring the environment, communicating with people and among each other, actuating and supplying themselves independently. This concept is now possible thanks to the low power consumption of electronic devices and accurate design of energy scavengers to harvest energy from the surrounding environment. In principle, an autonomous device comprises three main subsystems: an energy scavenger, an energy storage unit and an operational stage. The energy scavenger is capable of harvesting very small amounts of energy from the surroundings and converting it into electrical energy. This energy can be stored in a small storage unit like a small battery or capacitor, thus being available as a power supply. The operational stage can perform a variety of tasks depending on the application. Inside its application range, this kind of system presents several advantages with respect to regular devices using external energy supplies. They can be simpler to apply as no external connections are needed; they are environmentally friendly and might be economically advantageous in the long term. Furthermore, their autonomous nature permits the application in locations where the local energy grid is not present and allows them to be ‘hidden' in the environment, being independent from interaction with humans. In the present paper an energy-harvesting system used to supply a hydraulic control valve of a heating system for a typical residential application is studied. The system converts the kinetic energy from the water flow inside the pipes of the heating system to power the energy scavenger. The harvesting unit is composed of a hydraulic turbine that converts the kinetic energy of the water flow into rotational motion to drive a small electric generator. The design phases comprise a trade-off analysis to define the most suitable hydraulic turbine and electric generator for the energy scavenger, and an optimization of the components to satisfy the systems specification
MEMS-enabled silicon photonic integrated devices and circuits
Photonic integrated circuits have seen a dramatic increase in complexity over the past decades. This development has been spurred by recent applications in datacenter communications and enabled by the availability of standardized mature technology platforms. Mechanical movement of wave-guiding structures at the micro- and nanoscale provides unique opportunities to further enhance functionality and to reduce power consumption in photonic integrated circuits. We here demonstrate integration of MEMS-enabled components in a simplified silicon photonics process based on IMEC's Standard iSiPP50G Silicon Photonics Platform and a custom release process
A Review of Smart Materials in Tactile Actuators for Information Delivery
As the largest organ in the human body, the skin provides the important
sensory channel for humans to receive external stimulations based on touch. By
the information perceived through touch, people can feel and guess the
properties of objects, like weight, temperature, textures, and motion, etc. In
fact, those properties are nerve stimuli to our brain received by different
kinds of receptors in the skin. Mechanical, electrical, and thermal stimuli can
stimulate these receptors and cause different information to be conveyed
through the nerves. Technologies for actuators to provide mechanical,
electrical or thermal stimuli have been developed. These include static or
vibrational actuation, electrostatic stimulation, focused ultrasound, and more.
Smart materials, such as piezoelectric materials, carbon nanotubes, and shape
memory alloys, play important roles in providing actuation for tactile
sensation. This paper aims to review the background biological knowledge of
human tactile sensing, to give an understanding of how we sense and interact
with the world through the sense of touch, as well as the conventional and
state-of-the-art technologies of tactile actuators for tactile feedback
delivery
Microswitches with Sputtered Au, AuPd,Au-on-AuPt, and AuPtCu Alloy Electric Contacts
This paper is the first to report on a new analytic model for predicting microcontact resistance and the design, fabrication, and testing of microelectromechanical systems (MEMS) metal contact switches with sputtered bimetallic (i.e., gold (Au)-on-Au-platinum (Pt), (Au-on-Au-(6.3at%)Pt)), binary alloy (i.e., Au-palladium (Pd), (Au-(3.7at%)Pd)), and ternary alloy (i.e., Au-Pt-copper (Cu), (Au-(5.0at%)Pt-(0.5at%)Cu)) electric contacts. The microswitches with bimetallic and binary alloy contacts resulted in contact resistance values between 1-2Omega. Preliminary reliability testing indicates a 3times increase in switching lifetime when compared to microswitches with sputtered Au electric contacts. The ternary alloy exhibited approximately a 6times increase in switch lifetime with contact resistance values ranging from approximately 0.2-1.8Omeg
Electrostatic actuation of silicon optomechanical resonators
Optomechanical systems offer one of the most sensitive methods for detecting
mechanical motion using shifts in the optical resonance frequency of the
optomechanical resonator . Presently, these systems are used for measuring
mechanical thermal noise displacement or mechanical motion actuated by optical
forces. Electrostatic capacitive actuation and detection have been shown
previously for silicon micro electro mechanical resonators for application in
filters and oscillators. Here, we demonstrate monolithic integration of
electrostatic capacitive actuation with optical sensing using silicon
optomechanical disk resonators and waveguides. The electrically excited
mechanical motion is observed as an optical intensity modulation when the input
electrical signal is at a frequency of 235MHz corresponding to the radial
vibrational mode of the silicon microdisk
Performance of RF MEMS switches at low temperatures
The actuation voltage of microelectromechanical system (MEMS) \ud
metal switches was investigated at temperatures ranging from 10 to 290 K. The investigation shows a 50% increase in the actuation voltage at low temperature. A comparison has been made using a published model and showed similar increment of actuation voltage at low temperature
- …
