3 research outputs found

    Two Heads are Better than One: A Bio-inspired Method for Improving Classification on EEG-ET Data

    Full text link
    Classifying EEG data is integral to the performance of Brain Computer Interfaces (BCI) and their applications. However, external noise often obstructs EEG data due to its biological nature and complex data collection process. Especially when dealing with classification tasks, standard EEG preprocessing approaches extract relevant events and features from the entire dataset. However, these approaches treat all relevant cognitive events equally and overlook the dynamic nature of the brain over time. In contrast, we are inspired by neuroscience studies to use a novel approach that integrates feature selection and time segmentation of EEG data. When tested on the EEGEyeNet dataset, our proposed method significantly increases the performance of Machine Learning classifiers while reducing their respective computational complexity.Comment: 6 pages, 3 figures, HCI International 2023 Poste

    Analyzing Brain Activity During Learning Tasks with EEG and Machine Learning

    Full text link
    This study aimed to analyze brain activity during various STEM activities, exploring the feasibility of classifying between different tasks. EEG brain data from twenty subjects engaged in five cognitive tasks were collected and segmented into 4-second clips. Power spectral densities of brain frequency waves were then analyzed. Testing different k-intervals with XGBoost, Random Forest, and Bagging Classifier revealed that Random Forest performed best, achieving a testing accuracy of 91.07% at an interval size of two. When utilizing all four EEG channels, cognitive flexibility was most recognizable. Task-specific classification accuracy showed the right frontal lobe excelled in mathematical processing and planning, the left frontal lobe in cognitive flexibility and mental flexibility, and the left temporoparietal lobe in connections. Notably, numerous connections between frontal and temporoparietal lobes were observed during STEM activities. This study contributes to a deeper understanding of implementing machine learning in analyzing brain activity and sheds light on the brain's mechanisms.Comment: 20 pages, 7 figure

    Trends in Machine Learning and Electroencephalogram (EEG): A Review for Undergraduate Researchers

    Full text link
    This paper presents a systematic literature review on Brain-Computer Interfaces (BCIs) in the context of Machine Learning. Our focus is on Electroencephalography (EEG) research, highlighting the latest trends as of 2023. The objective is to provide undergraduate researchers with an accessible overview of the BCI field, covering tasks, algorithms, and datasets. By synthesizing recent findings, our aim is to offer a fundamental understanding of BCI research, identifying promising avenues for future investigations.Comment: 14 pages, 1 figure, HCI International 2023 Conferenc
    corecore