12,744 research outputs found
Recommended from our members
ranacapa: An R package and Shiny web app to explore environmental DNA data with exploratory statistics and interactive visualizations.
Environmental DNA (eDNA) metabarcoding is becoming a core tool in ecology and conservation biology, and is being used in a growing number of education, biodiversity monitoring, and public outreach programs in which professional research scientists engage community partners in primary research. Results from eDNA analyses can engage and educate natural resource managers, students, community scientists, and naturalists, but without significant training in bioinformatics, it can be difficult for this diverse audience to interact with eDNA results. Here we present the R package ranacapa, at the core of which is a Shiny web app that helps perform exploratory biodiversity analyses and visualizations of eDNA results. The app requires a taxonomy-by-sample matrix and a simple metadata file with descriptive information about each sample. The app enables users to explore the data with interactive figures and presents results from simple community ecology analyses. We demonstrate the value of ranacapa to two groups of community partners engaging with eDNA metabarcoding results
Applications of next-generation sequencing technologies and computational tools in molecular evolution and aquatic animals conservation studies : a short review
Aquatic ecosystems that form major biodiversity hotspots are critically threatened due to environmental and anthropogenic stressors. We believe that, in this genomic era, computational methods can be applied to promote aquatic biodiversity conservation by addressing questions related to the evolutionary history of aquatic organisms at the molecular level. However, huge amounts of genomics data generated can only be discerned through the use of bioinformatics. Here, we examine the applications of next-generation sequencing technologies and bioinformatics tools to study the molecular evolution of aquatic animals and discuss the current challenges and future perspectives of using bioinformatics toward aquatic animal conservation efforts
Deletion within the Src homology domain 3 of Bruton's tyrosine kinase resulting in X-linked agammaglobulinemia (XLA).
The gene responsible for X-linked agammaglobulinemia (XLA) has been recently identified to code for a cytoplasmic tyrosine kinase (Bruton's agammaglobulinemia tyrosine kinase, BTK), required for normal B cell development. BTK, like many other cytoplasmic tyrosine kinases, contains Src homology domains (SH2 and SH3), and catalytic kinase domain. SH3 domains are important for the targeting of signaling molecules to specific subcellular locations. We have identified a family with XLA whose affected members have a point mutation (g-->a) at the 5' splice site of intron 8, resulting in the skipping of coding exon 8 and loss of 21 amino acids forming the COOH-terminal portion of the BTK SH3 domain. The study of three generations within this kinship, using restriction fragment length polymorphism and DNA analysis, allowed identification of the mutant X chromosome responsible for XLA and the carrier status in this family. BTK mRNA was present in normal amounts in Epstein-Barr virus-induced B lymphoblastoid cell lines established from affected family members. Although the SH3 deletion did not alter BTK protein stability and kinase activity of the truncated BTK protein was normal, the affected patients nevertheless have a severe B cell defect characteristic for XLA. The mutant protein was modeled using the normal BTK SH3 domain. The deletion results in loss of two COOH-terminal beta strands containing several residues critical for the formation of the putative SH3 ligand-binding pocket. We predict that, as a result, one or more crucial SH3 binding proteins fail to interact with BTK, interrupting the cytoplasmic signal transduction process required for B cell differentiation
Environmental DNA (eDNA) metabarcoding-based estimation of marine stocks
Information on species composition and biomass/abundance of exploited species in coastal
fisheries is vital in management of resources. One of the most important mandates of the
leading institution is judicious management of coastal and deep sea fishery resources.
Traditional methods of identifying species and estimating biomass/abundance have inherent
drawbacks which could be ameliorated by DNA marker based approach. Environmental DNA
(eDNA) can be obtained from the skin, mucous, gamates, faeces, blood and other cells that
are constantly being shed into the immediate environment by the organism. Analysis of
this eDNA can give us information on the organisms, their abundance and biomass. Recent
advances in next generation sequencing enable simultaneous sequencing of DNA from
whole communities known as metabarcoding. Studies carried out in aquaria, large lakes,
rivers and marine environment consistently suggest that eDNA metabarcoding outperforms
traditional survey methods in terms of non-invasive sampling, sensitivity and cost incurred
The beta subunit of the signal recognition particle receptor is a transmembrane GTPase that anchors the alpha subunit, a peripheral membrane GTPase, to the endoplasmic reticulum membrane.
The signal recognition particle receptor (SR) is required for the cotranslational targeting of both secretory and membrane proteins to the endoplasmic reticulum (ER) membrane. During targeting, the SR interacts with the signal recognition particle (SRP) which is bound to the signal sequence of the nascent protein chain. This interaction catalyzes the GTP-dependent transfer of the nascent chain from SRP to the protein translocation apparatus in the ER membrane. The SR is a heterodimeric protein comprised of a 69-kD subunit (SR alpha) and a 30-kD subunit (SR beta) which are associated with the ER membrane in an unknown manner. SR alpha and the 54-kD subunits of SRP (SRP54) each contain related GTPase domains which are required for SR and SRP function. Molecular cloning and sequencing of a cDNA encoding SR beta revealed that SR beta is a transmembrane protein and, like SR alpha and SRP54, is a member of the GTPase superfamily. Although SR beta defines its own GTPase subfamily, it is distantly related to ARF and Sar1. Using UV cross-linking, we confirm that SR beta binds GTP specifically. Proteolytic digestion experiments show that SR alpha is required for the interaction of SRP with SR. SR alpha appears to be peripherally associated with the ER membrane, and we suggest that SR beta, as an integral membrane protein, mediates the membrane association of SR alpha. The discovery of its guanine nucleotide-binding domain, however, makes it likely that its role is more complex than that of a passive anchor for SR alpha. These findings suggest that a cascade of three directly interacting GTPases functions during protein targeting to the ER membrane
Bioprospecting soil metagenomes for potential new antibiotics : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Genetics at Massey University, Albany, New Zealand
Tau-crystallin/alpha-enolase: one gene encodes both an enzyme and a lens structural protein.
tau-Crystallin has been a major component of the cellular lenses of species throughout vertebrate evolution, from lamprey to birds. Immunofluorescence analysis of the embryonic turtle lens, using antiserum to lamprey tau-crystallin showed that the protein is expressed throughout embryogenesis and is present at high concentrations in all parts of the lens. Partial peptide sequence for the isolated turtle protein and deduced sequences for several lamprey peptides all revealed a close similarity to the glycolytic enzyme enolase (E.C. 4.2.1.11). A full-sized cDNA for putative duck tau-crystallin was obtained and sequenced, confirming the close relationship with alpha-enolase. Southern blot analysis showed that the duck genome contains a single alpha-enolase gene, while Northern blot analysis showed that the message for tau-crystallin/alpha-enolase is present in embryonic duck lens at 25 times the abundance found in liver. tau-Crystallin possesses enolase activity, but the activity is greatly reduced, probably because of age-related posttranslational modification. It thus appears that a highly conserved, important glycolytic enzyme has been used as a structural component of lens since the start of vertebrate evolution. Apparently the enzyme has not been recruited for its catalytic activity but for some distinct structural property. tau-Crystallin/alpha-enolase is an example of a multifunctional protein playing two very different roles in evolution but encoded by a single gene
The major myosin-binding domain of skeletal muscle MyBP-C (C protein) resides in the COOH-terminal, immunoglobulin C2 motif.
A common feature shared by myosin-binding proteins from a wide variety of species is the presence of a variable number of related internal motifs homologous to either the Ig C2 or the fibronectin (Fn) type III repeats. Despite interest in the potential function of these motifs, no group has clearly demonstrated a function for these sequences in muscle, either intra- or extracellularly. We have completed the nucleotide sequence of the fast type isoform of MyBP-C (C protein) from chicken skeletal muscle. The deduced amino acid sequence reveals seven Ig C2 sets and three Fn type III motifs in MyBP-C. alpha-chymotryptic digestion of purified MyBP-C gives rise to four peptides. NH2-terminal sequencing of these peptides allowed us to map the position of each along the primary structure of the protein. The 28-kD peptide contains the NH2-terminal sequence of MyBP-C, including the first C2 repeat. It is followed by two internal peptides, one of 5 kD containing exclusively spacer sequences between the first and second C2 motifs, and a 95-kD fragment containing five C2 domains and three fibronectin type III motifs. The C-terminal sequence of MyBP-C is present in a 14-kD peptide which contains only the last C2 repeat. We examined the binding properties of these fragments to reconstituted (synthetic) myosin filaments. Only the COOH-terminal 14-kD peptide is capable of binding myosin with high affinity. The NH2-terminal 28-kD fragment has no myosin-binding, while the long internal 100-kD peptide shows very weak binding to myosin. We have expressed and purified the 14-kD peptide in Escherichia coli. The recombinant protein exhibits saturable binding to myosin with an affinity comparable to that of the 14-kD fragment obtained by proteolytic digestion (1/2 max binding at approximately 0.5 microM). These results indicate that the binding to myosin filaments is mainly restricted to the last 102 amino acids of MyBP-C. The remainder of the molecule (1,032 amino acids) could interact with titin, MyBP-H (H protein) or thin filament components. A comparison of the highly conserved Ig C2 domains present at the COOH-terminus of five MyBPs thus far sequenced (human slow and fast MyBP-C, human and chicken MyBP-H, and chicken MyBP-C) was used to identify residues unique to these myosin-binding Ig C2 repeats
- …
