40 research outputs found
A Mouse Model of Serotonin 1B Receptor Modulation of Cocaine and Methamphetamine Craving
abstract: Serotonin 1B receptors (5-HT1BRs) are a novel target for developing pharmacological therapies to reduce psychostimulant craving. 5-HT1BRs are expressed in the mesolimbic pathway projecting from the ventral tegmental area (VTA) to the nucleus accumbens (NAc), which is involved in reward and motivation. 5-HT1BR agonists modulate both cocaine- and methamphetamine-seeking behaviors in rat models of psychostimulant craving. In this dissertation, I tested the central hypothesis that 5-HT1BRs regulate cocaine and methamphetamine stimulant and rewarding effects in mice. I injected mice daily with cocaine for 20 days and then tested them 20 days after their last injection. The results showed that the 5-HT1BR agonist CP94253 attenuated sensitization of cocaine-induced locomotion and cocaine-seeking behavior, measured as a decrease in the ability of a cocaine priming injection to reinstate extinguished cocaine-conditioned place preference (CPP). Subsequent experiments showed that CP94253 given prior to conditioning sessions had no effect on acquisition of methamphetamine-CPP, a measure of drug reward; however, CP94253 given prior to testing attenuated expression of methamphetamine-CPP, a measure of drug seeking. To examine brain regions and cell types involved in CP94253 attenuation of methamphetamine-seeking, I examined changes in the immediate early gene product, Fos, which is a marker of brain activity involving gene transcription changes. Mice expressing methamphetamine-CPP showed elevated Fos expression in the VTA and basolateral amygdala (BlA), and reduced Fos in the central nucleus of the amygdala (CeA). In mice showing CP94253-induced attenuation of methamphetamine-CPP expression, Fos was increased in the VTA, NAc shell and core, and the dorsal medial caudate-putamen. CP94253 also reversed the methamphetamine-conditioned decrease in Fos expression in the CeA and the increase in the BlA. In drug-naïve, non-conditioned control mice, CP94253 only increased Fos in the CeA, suggesting that the increases observed in methamphetamine-conditioned mice were due to conditioning rather than an unconditioned effect of CP94253 on Fos expression. In conclusion, 5-HT1BR stimulation attenuates both cocaine and methamphetamine seeking in mice, and that the latter effect may involve normalizing activity in the amygdala and increasing activity in the mesolimbic pathway. These findings further support the potential efficacy of 5-HT1BR agonists as pharmacological interventions for psychostimulant craving in humans.Dissertation/ThesisDoctoral Dissertation Neuroscience 201
Recommended from our members
Neural systems involved in delay and risk assessment in the rat
This thesis investigated the contribution of the nucleus accumbens core (AcbC) and the hippocampus (H) to choice and learning involving reinforcement that was delayed or unlikely. Animals must frequently act to influence the world even when the reinforcing outcomes of their actions are delayed. Learning with action–outcome delays is a complex problem, and little is known of the neural mechanisms that bridge such delays. Impulsive choice, one aspect of impulsivity, is characterized by an abnormally high preference for small, immediate rewards over larger delayed rewards, and is a feature of attention-deficit/hyperactivity disorder (ADHD), addiction, mania, and certain personality disorders. Furthermore, when animals choose between alternative courses of action, seeking to maximize the benefit obtained, they must also evaluate the likelihood of the available outcomes. Little is known of the neural basis of this process, or what might predispose individuals to be overly conservative or to take risks excessively (avoiding or preferring uncertainty, respectively), but risk taking is another aspect of the personality trait of impulsivity and is a feature of a number of psychiatric disorders, including pathological gambling and some personality disorders.
The AcbC, part of the ventral striatum, is required for normal preference for a large, delayed reward over a small, immediate reward (self-controlled choice) in rats, but the reason for this is unclear. Chapter 3 investigated the role of the AcbC in learning a free-operant instrumental response using delayed reinforcement, performance of a previously learned response for delayed reinforcement, and assessment of the relative magnitudes of two different rewards. Groups of rats with excitotoxic or sham lesions of the AcbC acquired an instrumental response with different delays (0, 10, or 20 s) between the lever-press response and reinforcer delivery. A second (inactive) lever was also present, but responding on it was never reinforced. The delays retarded learning in normal rats. AcbC lesions did not hinder learning in the absence of delays, but AcbC-lesioned rats were impaired in learning when there was a delay, relative to sham-operated controls. Rats were subsequently trained to discriminate reinforcers of different magnitudes. AcbC-lesioned rats were more sensitive to differences in reinforcer magnitude than sham-operated controls, suggesting that the deficit in self-controlled choice previously observed in such rats was a consequence of reduced preference for delayed rewards relative to immediate rewards, not of reduced preference for large rewards relative to small rewards. AcbC lesions also impaired the performance of a previously learned instrumental response in a delay-dependent fashion. These results demonstrate that the AcbC contributes to instrumental learning and performance by bridging delays between subjects’ actions and the ensuing outcomes that reinforce behaviour.
When outcomes are delayed, they may be attributed to the action that caused them, or mistakenly attributed to other stimuli, such as the environmental context. Consequently, animals that are poor at forming context–outcome associations might learn action–outcome associations better with delayed reinforcement than normal animals. The hippocampus contributes to the representation of environmental context, being required for aspects of contextual conditioning. It was therefore hypothesized that animals with H lesions would be better than normal animals at learning to act on the basis of delayed reinforcement. Chapter 4 tested the ability of H-lesioned rats to learn a free-operant instrumental response using delayed reinforcement, and their ability to exhibit self-controlled choice. Rats with sham or excitotoxic H lesions acquired an instrumental response with different delays (0, 10, or 20 s) between the response and reinforcer delivery. H-lesioned rats responded slightly less than sham-operated controls in the absence of delays, but they became better at learning (relative to shams) as the delays increased; delays impaired learning less in H-lesioned rats than in shams. In contrast, lesioned rats exhibited impulsive choice, preferring an immediate, small reward to a delayed, larger reward, even though they preferred the large reward when it was not delayed. These results support the view that the H hinders action–outcome learning with delayed outcomes, perhaps because it promotes the formation of context–outcome associations instead. However, although lesioned rats were better at learning with delayed reinforcement, they were worse at choosing it, suggesting that self-controlled choice and learning with delayed reinforcement tax different psychological processes.
Chapter 5 examined the effects of excitotoxic lesions of the AcbC on probabilistic choice in rats. Rats chose between a single food pellet delivered with certainty (probability p = 1) and four food pellets delivered with varying degrees of uncertainty (p = 1, 0.5, 0.25, 0.125, and 0.0625) in a discrete-trial task, with the large-reinforcer probability decreasing or increasing across the session. Subjects were trained on this task and then received excitotoxic or sham lesions of the AcbC before being retested. After a transient period during which AcbC-lesioned rats exhibited relative indifference between the two alternatives compared to controls, AcbC-lesioned rats came to exhibit risk-averse choice, choosing the large reinforcer less often than controls when it was uncertain, to the extent that they obtained less food as a result. Rats behaved as if indifferent between a single certain pellet and four pellets at p = 0.32 (sham-operated) or at p = 0.70 (AcbC-lesioned) by the end of testing. When the probabilities did not vary across the session, AcbC-lesioned rats and controls strongly preferred the large reinforcer when it was certain, and strongly preferred the small reinforcer when the large reinforcer was very unlikely (p = 0.0625), with no differences between AcbC-lesioned and sham-operated groups. These results suggest that the AcbC contributes to action selection by promoting the choice of uncertain, as well as delayed, reward
Recommended from our members
Testing changes in gene expression profiles in Octopus vulgaris (Mollusca Cephalopoda)
The aim of this thesis is to contribute to the understanding of the molecular machinery involved in learning and memory processes in Octopus vulgaris. Fear is the leitmotif. A fear conditioning training protocol was developed to evaluate behavioural responses in animals negatively conditioned to an artificial stimulus. To test whether interaction with con specifics in a solitary animal induces a form of innate fear, experiments were carried out to test the influence of 'social' interaction on predatory performances.
Genomic information available for O.vulgaris is limited, from these data I found a-tubulin, octopressin, cephalotocin, stathmin. I also identified the partial cDNA sequences for TH, uch and dat. Creb and ubi were also considered herein.
I studied the pattern of distribution of these genes by in situ hybridization, the analysis of the co-localization of Ov-dat and Ov-THtranscripts allowed to draw a possible distribution of dopaminergic and noradrenergic neurons in the octopus CNS.
I analysed the pattern of expression of these genes in response to fear. I showed that CREB phosphorylation levels significantly increased during memory retrieval suggesting that a phenomenon analogue to reconsolidation may occur in octopus.
Experiments of qRT-PCR revealed the increased expression of Ov-uch and Ov-stm in the lobes known as centers for learning and memory confirming the involvement of these genes in the processes of synaptic plasticity, learning and LTM.
The increased expression of Ov-dat and Ov-TH in response to learned fear suggests that the consolidation of a task with aversive reinforcers is mediated by a dopaminergic pathway. On the contrary, in response to social interaction these genes are down-regulated suggesting that this process is mediated by other neurotransmitters.
Finally, this study will provide the basic tools for future experiments where the analysis of the molecular machinery may be correlated with different forms of learning and synaptic plasticity
Glucocorticoids
As one class of the most important steroid hormones, glucocorticoids have long been recognised and their therapeutic benefits have been widely used in clinical treatment, especially in anti-inflammation cases. Glucocorticoids regulate various processes in the body including the mobilization of energy stores, immune functions, gene expression, and maintenance of the homeostasis as well as the stress response, this is not surprising that the concept of "glucocorticoids" is mentioned in almost all medical text books that focus on specific organs or systems such as the cardiovascular system, the immune system, and the neuroendocrine system. The book of Glucocorticoids - New Recognition of Our Familiar Friend aims to introduce the latest findings relating to glucocorticoids, either freshly from the laboratory or from clinical case studies, and to open up a new angle of looking at the issue of balancing the therapeutic benefits and side effects brought up by glucocorticoids
