659 research outputs found

    LOT-ECC: LOcalized and tiered reliability mechanisms for commodity memory systems

    Get PDF
    pre-printMemory system reliability is a serious and growing concern in modern servers. Existing chipkill-level mem- ory protection mechanisms suffer from several draw- backs. They activate a large number of chips on ev- ery memory access - this increases energy consump- tion, and reduces performance due to the reduction in rank-level parallelism. Additionally, they increase ac- cess granularity, resulting in wasted bandwidth in the absence of sufficient access locality. They also restrict systems to use narrow-I/O x4 devices, which are known to be less energy-efficient than the wider x8 DRAM de- vices. In this paper, we present LOT-ECC, a local- ized and multi-tiered protection scheme that attempts to solve these problems. We separate error detection and error correction functionality, and employ simple checksum and parity codes effectively to provide strong fault-tolerance, while simultaneously simplifying imple- mentation. Data and codes are localized to the same DRAM row to improve access efficiency. We use sys- tem firmware to store correction codes in DRAM data memory and modify the memory controller to handle data mapping. We thus build an effective fault-tolerance mechanism that provides strong reliability guarantees, activates as few chips as possible (reducing power con- sumption by up to 44.8% and reducing latency by up to 46.9%), and reduces circuit complexity, all while work- ing with commodity DRAMs and operating systems. Fi- nally, we propose the novel concept of a heterogeneous DIMM that enables the extension of LOT-ECC to x16 and wider DRAM parts

    LOT-ECC: LOcalized and tiered reliability mechanisms for commodity memory systems

    Get PDF
    pre-printMemory system reliability is a serious and growing concern in modern servers. Existing chipkill-level mem- ory protection mechanisms suffer from several draw- backs. They activate a large number of chips on ev- ery memory access - this increases energy consump- tion, and reduces performance due to the reduction in rank-level parallelism. Additionally, they increase ac- cess granularity, resulting in wasted bandwidth in the absence of sufficient access locality. They also restrict systems to use narrow-I/O x4 devices, which are known to be less energy-efficient than the wider x8 DRAM de- vices. In this paper, we present LOT-ECC, a local- ized and multi-tiered protection scheme that attempts to solve these problems. We separate error detection and error correction functionality, and employ simple checksum and parity codes effectively to provide strong fault-tolerance, while simultaneously simplifying imple- mentation. Data and codes are localized to the same DRAM row to improve access efficiency. We use sys- tem firmware to store correction codes in DRAM data memory and modify the memory controller to handle data mapping. We thus build an effective fault-tolerance mechanism that provides strong reliability guarantees, activates as few chips as possible (reducing power con- sumption by up to 44.8% and reducing latency by up to 46.9%), and reduces circuit complexity, all while work- ing with commodity DRAMs and operating systems. Fi- nally, we propose the novel concept of a heterogeneous DIMM that enables the extension of LOT-ECC to x16 and wider DRAM parts

    Hardware Mechanisms for Efficient Memory System Security

    Full text link
    The security of a computer system hinges on the trustworthiness of the operating system and the hardware, as applications rely on them to protect code and data. As a result, multiple protections for safeguarding the hardware and OS from attacks are being continuously proposed and deployed. These defenses, however, are far from ideal as they only provide partial protection, require complex hardware and software stacks, or incur high overheads. This dissertation presents hardware mechanisms for efficiently providing strong protections against an array of attacks on the memory hardware and the operating system’s code and data. In the first part of this dissertation, we analyze and optimize protections targeted at defending memory hardware from physical attacks. We begin by showing that, contrary to popular belief, current DDR3 and DDR4 memory systems that employ memory scrambling are still susceptible to cold boot attacks (where the DRAM is frozen to give it sufficient retention time and is then re-read by an attacker after reboot to extract sensitive data). We then describe how memory scramblers in modern memory controllers can be transparently replaced by strong stream ciphers without impacting performance. We also demonstrate how the large storage overheads associated with authenticated memory encryption schemes (which enable tamper-proof storage in off-chip memories) can be reduced by leveraging compact integer encodings and error-correcting code (ECC) DRAMs – without forgoing the error detection and correction capabilities of ECC DRAMs. The second part of this dissertation presents Neverland: a low-overhead, hardware-assisted, memory protection scheme that safeguards the operating system from rootkits and kernel-mode malware. Once the system is done booting, Neverland’s hardware takes away the operating system’s ability to overwrite certain configuration registers, as well as portions of its own physical address space that contain kernel code and security-critical data. Furthermore, it prohibits the CPU from fetching privileged code from any memory region lying outside the physical addresses assigned to the OS kernel and drivers. This combination of protections makes it extremely hard for an attacker to tamper with the kernel or introduce new privileged code into the system – even in the presence of software vulnerabilities. Neverland enables operating systems to reduce their attack surface without having to rely on complex integrity monitoring software or hardware. The hardware mechanisms we present in this dissertation provide building blocks for constructing a secure computing base while incurring lower overheads than existing protections.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147604/1/salessaf_1.pd

    Doctor of Philosophy

    Get PDF
    dissertationThe computing landscape is undergoing a major change, primarily enabled by ubiquitous wireless networks and the rapid increase in the use of mobile devices which access a web-based information infrastructure. It is expected that most intensive computing may either happen in servers housed in large datacenters (warehouse- scale computers), e.g., cloud computing and other web services, or in many-core high-performance computing (HPC) platforms in scientific labs. It is clear that the primary challenge to scaling such computing systems into the exascale realm is the efficient supply of large amounts of data to hundreds or thousands of compute cores, i.e., building an efficient memory system. Main memory systems are at an inflection point, due to the convergence of several major application and technology trends. Examples include the increasing importance of energy consumption, reduced access stream locality, increasing failure rates, limited pin counts, increasing heterogeneity and complexity, and the diminished importance of cost-per-bit. In light of these trends, the memory system requires a major overhaul. The key to architecting the next generation of memory systems is a combination of the prudent incorporation of novel technologies, and a fundamental rethinking of certain conventional design decisions. In this dissertation, we study every major element of the memory system - the memory chip, the processor-memory channel, the memory access mechanism, and memory reliability, and identify the key bottlenecks to efficiency. Based on this, we propose a novel main memory system with the following innovative features: (i) overfetch-aware re-organized chips, (ii) low-cost silicon photonic memory channels, (iii) largely autonomous memory modules with a packet-based interface to the proces- sor, and (iv) a RAID-based reliability mechanism. Such a system is energy-efficient, high-performance, low-complexity, reliable, and cost-effective, making it ideally suited to meet the requirements of future large-scale computing systems

    Doctor of Philosophy in Computing

    Get PDF
    dissertatio

    BlueDBM: An Appliance for Big Data Analytics

    Get PDF
    Complex data queries, because of their need for random accesses, have proven to be slow unless all the data can be accommodated in DRAM. There are many domains, such as genomics, geological data and daily twitter feeds where the datasets of interest are 5TB to 20 TB. For such a dataset, one would need a cluster with 100 servers, each with 128GB to 256GBs of DRAM, to accommodate all the data in DRAM. On the other hand, such datasets could be stored easily in the flash memory of a rack-sized cluster. Flash storage has much better random access performance than hard disks, which makes it desirable for analytics workloads. In this paper we present BlueDBM, a new system architecture which has flash-based storage with in-store processing capability and a low-latency high-throughput inter-controller network. We show that BlueDBM outperforms a flash-based system without these features by a factor of 10 for some important applications. While the performance of a ram-cloud system falls sharply even if only 5%~10% of the references are to the secondary storage, this sharp performance degradation is not an issue in BlueDBM. BlueDBM presents an attractive point in the cost-performance trade-off for Big Data analytics.Quanta Computer (Firm)Samsung (Firm)Lincoln Laboratory (PO7000261350)Intel Corporatio
    • …
    corecore