25,808 research outputs found

    RAE-1 ligands for the NKG2D receptor are regulated by E2F transcription factors, which control cell cycle entry.

    Get PDF
    The NKG2D stimulatory receptor expressed by natural killer cells and T cell subsets recognizes cell surface ligands that are induced on transformed and infected cells and facilitate immune rejection of tumor cells. We demonstrate that expression of retinoic acid early inducible gene 1 (RAE-1) family NKG2D ligands in cancer cell lines and proliferating normal cells is coupled directly to cell cycle regulation. Raet1 genes are directly transcriptionally activated by E2F family transcription factors, which play a central role in regulating cell cycle entry. Induction of RAE-1 occurred in primary cell cultures, embryonic brain cells in vivo, and cells in healing skin wounds and, accordingly, wound healing was delayed in mice lacking NKG2D. Transcriptional activation by E2Fs is likely coordinated with posttranscriptional regulation by other stress responses. These findings suggest that cellular proliferation, as occurs in cancer cells but also other pathological conditions, is a key signal tied to immune reactions mediated by NKG2D-bearing lymphocytes

    Space-times admitting a three-dimensional conformal group

    Get PDF
    Perfect fluid space-times admitting a three-dimensional Lie group of conformal motions containing a two-dimensional Abelian Lie subgroup of isometries are studied. Demanding that the conformal Killing vector be proper (i.e., not homothetic nor Killing), all such space-times are classified according to the structure of their corresponding three-dimensional conformal Lie group and the nature of their corresponding orbits (that are assumed to be non-null). Each metric is then explicitly displayed in coordinates adapted to the symmetry vectors. Attention is then restricted to the diagonal case, and exact perfect fluid solutions are obtained in both the cases in which the fluid four-velocity is tangential or orthogonal to the conformal orbits, as well as in the more general "tilting" case.Comment: Latex 34 page

    Identification of a Proliferation Gene Cluster Associated with HPV E6/E7 Expression Level and Viral DNA Load in Invasive Cervical Carcinoma

    Full text link
    Specific HPV DNA sequences are associated with more than 90% of invasive carcinomas of the uterine cervix. Viral E6 and E7 oncogenes are key mediators in cell transformation by disrupting TP53 and RB pathways. To investigate molecular mechanisms involved in the progression of invasive cervical carcinoma, we performed a gene expression study on cases selected according to viral and clinical parameters. Using Coupled Two-Way Clustering and Sorting Points Into Neighbourhoods methods, we identified a Cervical Cancer Proliferation Cluster composed of 163 highly correlated transcripts, many of which corresponded to E2F pathway genes controlling cell proliferation, whereas no primary TP53 targets were present in this cluster. The average expression level of the genes of this cluster was higher in tumours with an early relapse than in tumours with a favourable course (P=0.026). Moreover, we found that E6/E7 mRNA expression level was positively correlated with the expression level of the cluster genes and with viral DNA load. These findings suggest that HPV E6/E7 expression level plays a key role in the progression of invasive carcinoma of the uterine cervix via the deregulation of cellular genes controlling tumour cell proliferation. HPV expression level may thus correspond to a biological marker useful for prognosis assessment and specific therapy of the disease

    Identification of calpain cleavage sites in the G1 cyclin-dependent kinase inhibitor p19(INK4d)

    Get PDF
    Calpains are a large family of Ca2+-dependent cysteine proteases that are ubiquitously distributed across most cell types and vertebrate species. Calpains play a role in cell differentiation, apoptosis, cytoskeletal remodeling, signal transduction and the cell cycle. The cell cycle proteins cyclin D1 and p21(KIP1), for example, have been shown to be affected by calpains. However, the rules that govern calpain cleavage specificity are poorly understood. We report here studies on the pattern of μ-calpain proteolysis of the p19(INK4d) protein, a cyclin-dependent kinase 4/6 inhibitor that negatively regulates the mammalian cell cycle. Our data show new characteristics of calpain action: μ-calpain cleaves p19(INK4d) immediately after the first and second ankyrin repeats that are structurally less stable compared to the other repeats. This is in contrast to features observed so far in the specificity of calpains for their substrates. These results imply that calpain may be involved in the cell cycle by regulating the cell cycle regulatory protein turnover through CDK inhibitors and cyclins

    SWIM: A computational tool to unveiling crucial nodes in complex biological networks

    Get PDF
    SWItchMiner (SWIM) is a wizard-like software implementation of a procedure, previously described, able to extract information contained in complex networks. Specifically, SWIM allows unearthing the existence of a new class of hubs, called "fight-club hubs", characterized by a marked negative correlation with their first nearest neighbors. Among them, a special subset of genes, called "switch genes", appears to be characterized by an unusual pattern of intra- and inter-module connections that confers them a crucial topological role, interestingly mirrored by the evidence of their clinic-biological relevance. Here, we applied SWIM to a large panel of cancer datasets from The Cancer Genome Atlas, in order to highlight switch genes that could be critically associated with the drastic changes in the physiological state of cells or tissues induced by the cancer development. We discovered that switch genes are found in all cancers we studied and they encompass protein coding genes and non-coding RNAs, recovering many known key cancer players but also many new potential biomarkers not yet characterized in cancer context. Furthermore, SWIM is amenable to detect switch genes in different organisms and cell conditions, with the potential to uncover important players in biologically relevant scenarios, including but not limited to human cancer
    corecore