8,343 research outputs found

    Forecasting in Big Data Environments: an Adaptable and Automated Shrinkage Estimation of Neural Networks (AAShNet)

    Full text link
    This paper considers improved forecasting in possibly nonlinear dynamic settings, with high-dimension predictors ("big data" environments). To overcome the curse of dimensionality and manage data and model complexity, we examine shrinkage estimation of a back-propagation algorithm of a deep neural net with skip-layer connections. We expressly include both linear and nonlinear components. This is a high-dimensional learning approach including both sparsity L1 and smoothness L2 penalties, allowing high-dimensionality and nonlinearity to be accommodated in one step. This approach selects significant predictors as well as the topology of the neural network. We estimate optimal values of shrinkage hyperparameters by incorporating a gradient-based optimization technique resulting in robust predictions with improved reproducibility. The latter has been an issue in some approaches. This is statistically interpretable and unravels some network structure, commonly left to a black box. An additional advantage is that the nonlinear part tends to get pruned if the underlying process is linear. In an application to forecasting equity returns, the proposed approach captures nonlinear dynamics between equities to enhance forecast performance. It offers an appreciable improvement over current univariate and multivariate models by RMSE and actual portfolio performance

    Interaction-Based Distributed Learning in Cyber-Physical and Social Networks

    Full text link
    In this paper we consider a network scenario in which agents can evaluate each other according to a score graph that models some physical or social interaction. The goal is to design a distributed protocol, run by the agents, allowing them to learn their unknown state among a finite set of possible values. We propose a Bayesian framework in which scores and states are associated to probabilistic events with unknown parameters and hyperparameters respectively. We prove that each agent can learn its state by means of a local Bayesian classifier and a (centralized) Maximum-Likelihood (ML) estimator of the parameter-hyperparameter that combines plain ML and Empirical Bayes approaches. By using tools from graphical models, which allow us to gain insight on conditional dependences of scores and states, we provide two relaxed probabilistic models that ultimately lead to ML parameter-hyperparameter estimators amenable to distributed computation. In order to highlight the appropriateness of the proposed relaxations, we demonstrate the distributed estimators on a machine-to-machine testing set-up for anomaly detection and on a social interaction set-up for user profiling

    Real time Traffic Flow Parameters Prediction with Basic Safety Messages at Low Penetration of Connected Vehicles

    Full text link
    The expected low market penetration of connected vehicles (CVs) in the near future could be a constraint in estimating traffic flow parameters, such as average travel speed of a roadway segment and average space headway between vehicles from the CV broadcasted data. This estimated traffic flow parameters from low penetration of connected vehicles become noisy compared to 100 percent penetration of CVs, and such noise reduces the real time prediction accuracy of a machine learning model, such as the accuracy of long short term memory (LSTM) model in terms of predicting traffic flow parameters. The accurate prediction of the parameters is important for future traffic condition assessment. To improve the prediction accuracy using noisy traffic flow parameters, which is constrained by limited CV market penetration and limited CV data, we developed a real time traffic data prediction model that combines LSTM with Kalman filter based Rauch Tung Striebel (RTS) noise reduction model. We conducted a case study using the Enhanced Next Generation Simulation (NGSIM) dataset, which contains vehicle trajectory data for every one tenth of a second, to evaluate the performance of this prediction model. Compared to a baseline LSTM model performance, for only 5 percent penetration of CVs, the analyses revealed that combined LSTM and RTS model reduced the mean absolute percentage error (MAPE) from 19 percent to 5 percent for speed prediction and from 27 percent to 9 percent for space-headway prediction. The statistical significance test with a 95 percent confidence interval confirmed no significant difference in predicted average speed and average space headway using this LSTM and RTS combination with only 5 percent CV penetration rate.Comment: 16 pages, 15 figures, 4 table

    Learning to Optimize

    Full text link
    Algorithm design is a laborious process and often requires many iterations of ideation and validation. In this paper, we explore automating algorithm design and present a method to learn an optimization algorithm, which we believe to be the first method that can automatically discover a better algorithm. We approach this problem from a reinforcement learning perspective and represent any particular optimization algorithm as a policy. We learn an optimization algorithm using guided policy search and demonstrate that the resulting algorithm outperforms existing hand-engineered algorithms in terms of convergence speed and/or the final objective value.Comment: 9 pages, 3 figure

    A Variational Analysis of Stochastic Gradient Algorithms

    Full text link
    Stochastic Gradient Descent (SGD) is an important algorithm in machine learning. With constant learning rates, it is a stochastic process that, after an initial phase of convergence, generates samples from a stationary distribution. We show that SGD with constant rates can be effectively used as an approximate posterior inference algorithm for probabilistic modeling. Specifically, we show how to adjust the tuning parameters of SGD such as to match the resulting stationary distribution to the posterior. This analysis rests on interpreting SGD as a continuous-time stochastic process and then minimizing the Kullback-Leibler divergence between its stationary distribution and the target posterior. (This is in the spirit of variational inference.) In more detail, we model SGD as a multivariate Ornstein-Uhlenbeck process and then use properties of this process to derive the optimal parameters. This theoretical framework also connects SGD to modern scalable inference algorithms; we analyze the recently proposed stochastic gradient Fisher scoring under this perspective. We demonstrate that SGD with properly chosen constant rates gives a new way to optimize hyperparameters in probabilistic models.Comment: 8 pages, 3 figure

    DeepTraffic: Crowdsourced Hyperparameter Tuning of Deep Reinforcement Learning Systems for Multi-Agent Dense Traffic Navigation

    Full text link
    We present a traffic simulation named DeepTraffic where the planning systems for a subset of the vehicles are handled by a neural network as part of a model-free, off-policy reinforcement learning process. The primary goal of DeepTraffic is to make the hands-on study of deep reinforcement learning accessible to thousands of students, educators, and researchers in order to inspire and fuel the exploration and evaluation of deep Q-learning network variants and hyperparameter configurations through large-scale, open competition. This paper investigates the crowd-sourced hyperparameter tuning of the policy network that resulted from the first iteration of the DeepTraffic competition where thousands of participants actively searched through the hyperparameter space.Comment: Neural Information Processing Systems (NIPS 2018) Deep Reinforcement Learning Worksho

    Evolving Rewards to Automate Reinforcement Learning

    Full text link
    Many continuous control tasks have easily formulated objectives, yet using them directly as a reward in reinforcement learning (RL) leads to suboptimal policies. Therefore, many classical control tasks guide RL training using complex rewards, which require tedious hand-tuning. We automate the reward search with AutoRL, an evolutionary layer over standard RL that treats reward tuning as hyperparameter optimization and trains a population of RL agents to find a reward that maximizes the task objective. AutoRL, evaluated on four Mujoco continuous control tasks over two RL algorithms, shows improvements over baselines, with the the biggest uplift for more complex tasks. The video can be found at: \url{https://youtu.be/svdaOFfQyC8}.Comment: Accepted to 6th AutoML@ICM

    Reconciling meta-learning and continual learning with online mixtures of tasks

    Full text link
    Learning-to-learn or meta-learning leverages data-driven inductive bias to increase the efficiency of learning on a novel task. This approach encounters difficulty when transfer is not advantageous, for instance, when tasks are considerably dissimilar or change over time. We use the connection between gradient-based meta-learning and hierarchical Bayes to propose a Dirichlet process mixture of hierarchical Bayesian models over the parameters of an arbitrary parametric model such as a neural network. In contrast to consolidating inductive biases into a single set of hyperparameters, our approach of task-dependent hyperparameter selection better handles latent distribution shift, as demonstrated on a set of evolving, image-based, few-shot learning benchmarks.Comment: updated experimental result

    MARTHE: Scheduling the Learning Rate Via Online Hypergradients

    Full text link
    We study the problem of fitting task-specific learning rate schedules from the perspective of hyperparameter optimization, aiming at good generalization. We describe the structure of the gradient of a validation error w.r.t. the learning rate schedule -- the hypergradient. Based on this, we introduce MARTHE, a novel online algorithm guided by cheap approximations of the hypergradient that uses past information from the optimization trajectory to simulate future behaviour. It interpolates between two recent techniques, RTHO (Franceschi et al., 2017) and HD (Baydin et al. 2018), and is able to produce learning rate schedules that are more stable leading to models that generalize better.Comment: IJCAI 2020. Larger images. Code available at https://github.com/awslabs/adatun

    Deep Reinforcement Learning that Matters

    Full text link
    In recent years, significant progress has been made in solving challenging problems across various domains using deep reinforcement learning (RL). Reproducing existing work and accurately judging the improvements offered by novel methods is vital to sustaining this progress. Unfortunately, reproducing results for state-of-the-art deep RL methods is seldom straightforward. In particular, non-determinism in standard benchmark environments, combined with variance intrinsic to the methods, can make reported results tough to interpret. Without significance metrics and tighter standardization of experimental reporting, it is difficult to determine whether improvements over the prior state-of-the-art are meaningful. In this paper, we investigate challenges posed by reproducibility, proper experimental techniques, and reporting procedures. We illustrate the variability in reported metrics and results when comparing against common baselines and suggest guidelines to make future results in deep RL more reproducible. We aim to spur discussion about how to ensure continued progress in the field by minimizing wasted effort stemming from results that are non-reproducible and easily misinterpreted.Comment: Accepted to the Thirthy-Second AAAI Conference On Artificial Intelligence (AAAI), 201
    • …
    corecore