9 research outputs found

    Dynamically mapping tasks with priorities and multiple deadlines in a heterogeneous environment

    Get PDF
    Includes bibliographical references (pages 166-167).In a distributed heterogeneous computing system, the resources have different capabilities and tasks have different requirements. To maximize the performance of the system, it is essential to assign the resources to tasks (match) and order the execution of tasks on each resource (schedule) to exploit the heterogeneity of the resources and tasks. Dynamic mapping (defined as matching and scheduling) is performed when the arrival of tasks is not known a priori. In the heterogeneous environment considered in this study, tasks arrive randomly, tasks are independent (i.e., no inter-task communication), and tasks have priorities and multiple soft deadlines. The value of a task is calculated based on the priority of the task and the completion time of the task with respect to its deadlines. The goal of a dynamic mapping heuristic in this research is to maximize the value accrued of completed tasks in a given interval of time. This research proposes, evaluates, and compares eight dynamic mapping heuristics. Two static mapping schemes (all arrival information of tasks are known) are designed also for comparison. The performance of the best heuristics is 84% of a calculated upper bound for the scenarios considered

    Hybrid ant colony system algorithm for static and dynamic job scheduling in grid computing

    Get PDF
    Grid computing is a distributed system with heterogeneous infrastructures. Resource management system (RMS) is one of the most important components which has great influence on the grid computing performance. The main part of RMS is the scheduler algorithm which has the responsibility to map submitted tasks to available resources. The complexity of scheduling problem is considered as a nondeterministic polynomial complete (NP-complete) problem and therefore, an intelligent algorithm is required to achieve better scheduling solution. One of the prominent intelligent algorithms is ant colony system (ACS) which is implemented widely to solve various types of scheduling problems. However, ACS suffers from stagnation problem in medium and large size grid computing system. ACS is based on exploitation and exploration mechanisms where the exploitation is sufficient but the exploration has a deficiency. The exploration in ACS is based on a random approach without any strategy. This study proposed four hybrid algorithms between ACS, Genetic Algorithm (GA), and Tabu Search (TS) algorithms to enhance the ACS performance. The algorithms are ACS(GA), ACS+GA, ACS(TS), and ACS+TS. These proposed hybrid algorithms will enhance ACS in terms of exploration mechanism and solution refinement by implementing low and high levels hybridization of ACS, GA, and TS algorithms. The proposed algorithms were evaluated against twelve metaheuristic algorithms in static (expected time to compute model) and dynamic (distribution pattern) grid computing environments. A simulator called ExSim was developed to mimic the static and dynamic nature of the grid computing. Experimental results show that the proposed algorithms outperform ACS in terms of best makespan values. Performance of ACS(GA), ACS+GA, ACS(TS), and ACS+TS are better than ACS by 0.35%, 2.03%, 4.65% and 6.99% respectively for static environment. For dynamic environment, performance of ACS(GA), ACS+GA, ACS+TS, and ACS(TS) are better than ACS by 0.01%, 0.56%, 1.16%, and 1.26% respectively. The proposed algorithms can be used to schedule tasks in grid computing with better performance in terms of makespan

    HSIP: A Novel Task Scheduling Algorithm for Heterogeneous Computing

    Get PDF

    Virtual Cluster Management for Analysis of Geographically Distributed and Immovable Data

    Get PDF
    Thesis (Ph.D.) - Indiana University, Informatics and Computing, 2015Scenarios exist in the era of Big Data where computational analysis needs to utilize widely distributed and remote compute clusters, especially when the data sources are sensitive or extremely large, and thus unable to move. A large dataset in Malaysia could be ecologically sensitive, for instance, and unable to be moved outside the country boundaries. Controlling an analysis experiment in this virtual cluster setting can be difficult on multiple levels: with setup and control, with managing behavior of the virtual cluster, and with interoperability issues across the compute clusters. Further, datasets can be distributed among clusters, or even across data centers, so that it becomes critical to utilize data locality information to optimize the performance of data-intensive jobs. Finally, datasets are increasingly sensitive and tied to certain administrative boundaries, though once the data has been processed, the aggregated or statistical result can be shared across the boundaries. This dissertation addresses management and control of a widely distributed virtual cluster having sensitive or otherwise immovable data sets through a controller. The Virtual Cluster Controller (VCC) gives control back to the researcher. It creates virtual clusters across multiple cloud platforms. In recognition of sensitive data, it can establish a single network overlay over widely distributed clusters. We define a novel class of data, notably immovable data that we call "pinned data", where the data is treated as a first-class citizen instead of being moved to where needed. We draw from our earlier work with a hierarchical data processing model, Hierarchical MapReduce (HMR), to process geographically distributed data, some of which are pinned data. The applications implemented in HMR use extended MapReduce model where computations are expressed as three functions: Map, Reduce, and GlobalReduce. Further, by facilitating information sharing among resources, applications, and data, the overall performance is improved. Experimental results show that the overhead of VCC is minimum. The HMR outperforms traditional MapReduce model while processing a particular class of applications. The evaluations also show that information sharing between resources and application through the VCC shortens the hierarchical data processing time, as well satisfying the constraints on the pinned data
    corecore