883 research outputs found

    iBUST: An intelligent behavioural trust model for securing industrial cyber-physical systems

    Get PDF
    To meet the demand of the world's largest population, smart manufacturing has accelerated the adoption of smart factories—where autonomous and cooperative instruments across all levels of production and logistics networks are integrated through a Cyber-Physical Production System (CPPS). However, these networks are comprised of various heterogeneous devices with varying computational power and memory capabilities. As a result, many secure communication protocols – that demand considerably high computational power and memory – can not be verbatim employed on these networks, and thereby, leaving them more vulnerable to security threats and attacks over conventional networks. These threats can largely be tackled by employing a Trust Management Model (TMM) by exploiting the behavioural patterns of nodes to identify their trust class. In this context, ML-based models are best suited due to their ability to capture hidden patterns in data, learning and improving the pattern detection accuracy over time to counteract and tackle threats of a dynamic nature, which is absent in most of the conventional models. However, among the existing ML-based solutions in detecting attack patterns, many of them are computationally expensive, require a long training time, and a considerably large amount of training data—which are seldom available. An aid to this is the association rule learning (ARL) paradigm, whose models are computationally inexpensive and do not require a long training time. Therefore, this paper proposes an ARL-based intelligent Behavioural Trust Model (iBUST) for securing the CPPS. For this intelligent TMM, a variant of Frequency Pattern Growth (FP-Growth), called enhanced FP-Growth (EFP-Growth) algorithm is developed by altering the internal data structures for faster execution and by developing a modified exponential decay function (MEDF) to automatically calculate minimum supports for adapting trust evolution characteristics. In addition, a new optimisation model for finding optimum parameter values in the MEDF and an algorithm for transmuting a 1D quantitative feature into a respective categorical feature are developed to facilitate the model. Afterwards, the trust class of an object is identified employing the Naïve Bayes classifier. This proposed model is evaluated on a trust evolution-supported experimental environment along with other compared models taking a benchmark dataset into consideration, where it outperforms its counterparts

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    The Impact of Artificial Intelligence on Strategic and Operational Decision Making

    Get PDF
    openEffective decision making lies at the core of organizational success. In the era of digital transformation, businesses are increasingly adopting data-driven approaches to gain a competitive advantage. According to existing literature, Artificial Intelligence (AI) represents a significant advancement in this area, with the ability to analyze large volumes of data, identify patterns, make accurate predictions, and provide decision support to organizations. This study aims to explore the impact of AI technologies on different levels of organizational decision making. By separating these decisions into strategic and operational according to their properties, the study provides a more comprehensive understanding of the feasibility, current adoption rates, and barriers hindering AI implementation in organizational decision making

    From Artificial Intelligence (AI) to Intelligence Augmentation (IA): Design Principles, Potential Risks, and Emerging Issues

    Get PDF
    We typically think of artificial intelligence (AI) as focusing on empowering machines with human capabilities so that they can function on their own, but, in truth, much of AI focuses on intelligence augmentation (IA), which is to augment human capabilities. We propose a framework for designing intelligent augmentation (IA) systems and it addresses six central questions about IA: why, what, who/whom, how, when, and where. To address the how aspect, we introduce four guiding principles: simplification, interpretability, human-centeredness, and ethics. The what aspect includes an IA architecture that goes beyond the direct interactions between humans and machines by introducing their indirect relationships through data and domain. The architecture also points to the directions for operationalizing the IA design simplification principle. We further identify some potential risks and emerging issues in IA design and development to suggest new questions for future IA research and to foster its positive impact on humanity

    Innovation of Tourism Mobility Systems in Historic City Centres: The Case of Austria

    Get PDF
    Fundamentally, tourism involves people on the move. Although controlled and well-managed tourism mobility can facilitate the sustainable touristic utilisation of places, uncontrolled touristic movement often creates significant challenges for host destinations. Developments in technology and digitalisation, such as the ubiquitous use of smartphones, are changing not only the way tourists move and behave while visiting historic cities, but also the evolution and management of tourism mobility systems in cities. Therefore, it is crucial to understand these changes and their effects on existing tourism mobility systems to benefit from digitalisation. This thesis develops a detailed understanding of the configuration of existing tourism mobility systems to analyse and model digitally induced innovations in tourism mobility systems in tourist-historic cities in Europe. This study employs the multi-level perspective (MLP) as an analytical tool. This approach enables a holistic analysis of innovation processes within tourism mobility by incorporating both internal and external factors that may influence system change. A two-step empirical approach was adopted. First, a scoping study was employed to identify the current innovation status of tourism mobility systems in United Nations Educational, Scientific and Cultural Organization (UNESCO) World Heritage City Centres in Europe. Based on these findings, in-depth expert interviews were then conducted for the Austrian case cities of Vienna, Salzburg and Graz to develop a detailed understanding of stepwise innovation within digitally penetrated tourism mobility systems. The main contribution of this study is the development of an analytical five-phase innovation model of tourism mobility systems in tourist-historic cities. This model provides a detailed understanding of the general characteristics of each innovation phase of the tourism mobility system and the drivers and constraints of innovation. The five-phase model can be used as an assessment tool to establish the current innovation status of a local tourism mobility system and to evaluate the readiness of the system to innovate (further). In addition, for the tourism mobility systems investigated in the research, a detailed understanding of the actor configuration was revealed, including the roles and responsibilities of the actors. This thesis also contributes to the conceptual discussion of tourism mobility as a joint objective for research and will be of utility to practitioners in developing more sustainable tourism mobility systems

    2023- The Twenty-seventh Annual Symposium of Student Scholars

    Get PDF
    The full program book from the Twenty-seventh Annual Symposium of Student Scholars, held on April 18-21, 2023. Includes abstracts from the presentations and posters.https://digitalcommons.kennesaw.edu/sssprograms/1027/thumbnail.jp

    Beyond Quantity: Research with Subsymbolic AI

    Get PDF
    How do artificial neural networks and other forms of artificial intelligence interfere with methods and practices in the sciences? Which interdisciplinary epistemological challenges arise when we think about the use of AI beyond its dependency on big data? Not only the natural sciences, but also the social sciences and the humanities seem to be increasingly affected by current approaches of subsymbolic AI, which master problems of quality (fuzziness, uncertainty) in a hitherto unknown way. But what are the conditions, implications, and effects of these (potential) epistemic transformations and how must research on AI be configured to address them adequately
    corecore