336 research outputs found

    Alignment control using visual servoing and mobilenet single-shot multi-box detection (SSD): a review

    Get PDF
    The concept is highly critical for robotic technologies that rely on visual feedback. In this context, robot systems tend to be unresponsive due to reliance on pre-programmed trajectory and path, meaning the occurrence of a change in the environment or the absence of an object. This review paper aims to provide comprehensive studies on the recent application of visual servoing and DNN. PBVS and Mobilenet-SSD were chosen algorithms for alignment control of the film handler mechanism of the portable x-ray system. It also discussed the theoretical framework features extraction and description, visual servoing, and Mobilenet-SSD. Likewise, the latest applications of visual servoing and DNN was summarized, including the comparison of Mobilenet-SSD with other sophisticated models. As a result of a previous study presented, visual servoing and MobileNet-SSD provide reliable tools and models for manipulating robotics systems, including where occlusion is present. Furthermore, effective alignment control relies significantly on visual servoing and deep neural reliability, shaped by different parameters such as the type of visual servoing, feature extraction and description, and DNNs used to construct a robust state estimator. Therefore, visual servoing and MobileNet-SSD are parameterized concepts that require enhanced optimization to achieve a specific purpose with distinct tools

    A Biologically Inspired Framework for the Intelligent Control of Mechatronic Systems and Its Application to a Micro Diving Agent

    Get PDF
    Mechatronic systems are becoming an intrinsic part of our daily life, and the adopted control approach in turn plays an essential role in the emulation of the intelligent behavior. In this paper, a framework for the development of intelligent controllers is proposed. We highlight that robustness, prediction, adaptation, and learning, which may be considered the most fundamental traits of all intelligent biological systems, should be taken into account within the project of the control scheme. Hence, the proposed framework is based on the fusion of a nonlinear control scheme with computational intelligence and also allows mechatronic systems to be able to make reasonable predictions about its dynamic behavior, adapt itself to changes in the plant, learn by interacting with the environment, and be robust to both structured and unstructured uncertainties. In order to illustrate the implementation of the control law within the proposed framework, a new intelligent depth controller is designed for a microdiving agent. On this basis, sliding mode control is combined with an adaptive neural network to provide the basic intelligent features. Online learning by minimizing a composite error signal, instead of supervised off-line training, is adopted to update the weight vector of the neural network. The boundedness and convergence properties of all closed-loop signals are proved using a Lyapunov-like stability analysis. Numerical simulations and experimental results obtained with the microdiving agent demonstrate the efficacy of the proposed approach and its suitableness for both stabilization and trajectory tracking problems.</p

    MATLAB

    Get PDF
    This excellent book represents the final part of three-volumes regarding MATLAB-based applications in almost every branch of science. The book consists of 19 excellent, insightful articles and the readers will find the results very useful to their work. In particular, the book consists of three parts, the first one is devoted to mathematical methods in the applied sciences by using MATLAB, the second is devoted to MATLAB applications of general interest and the third one discusses MATLAB for educational purposes. This collection of high quality articles, refers to a large range of professional fields and can be used for science as well as for various educational purposes

    Design and Control Modeling of Novel Electro-magnets Driven Spherical Motion Generators

    Get PDF

    Control of a Hysteretic Walking Piezo Actuator

    Get PDF

    A field programmable gate array based motion control platform

    Get PDF
    The expectations from motion control systems have been rising day by day. As the system becomes more complex, conventional motion control systems can not achieve to meet all the specifications with optimized results. This creates the need of re-designing the control platform in order to meet the new specifications. Field programmable gate arrays (FPGA) offer reconfigurable hardware, which would result in overcoming this re-designing issue. The hardware structure of the system can be reconfigured, even though the hardware is deployed. As the functionality is provided by the hardware, the performance is enhanced. The dedicated hardware also improves the power consumption. The board size also shrinks, as the discrete components can be implemented in FPGA. The shrinkage of the board size also lowers the cost. As a trade-off, FPGA programming is more complicated than software programming. The aim of this thesis is to create a level of abstraction in order to diminish the requirement of advanced hardware description language knowledge for implementing motion control algorithms on FPGA's. The hardware library is introduced which is specifically implemented for motion control purposes. In order to have a thorough motion control platform, other parts of the system like, user interface, kinematics calculations and trajectory generation, have been implemented as a software library. The control algorithms are tested, and the system is verified by experimenting on a parallel mechanism

    Automated steering design using Neural Network

    Get PDF
    If you don't move forward-you begin to move backward. Technological advancement today has brought us to a frontier where the human has become the basic constraint in our ascent towards safer and faster transportation. Human error is mostly responsible for many road traffic accidents which every year take the lives of lots of people and injure many more. Driving protection is thus a major concern leading to research in autonomous driving systems. Automatic motion planning and navigation is the primary task of an automated guided vehicle or mobile robots. All such navigation systems consist of a data collection system, a decision making system and a hardware control system. In this research our artificial intelligence system is based on neural network model for navigation of an AGV in unpredictable and imprecise environment. A five layered with gradient descent momentum back-propagation system which uses heading angle and obstacle distances as input. The networks are trained by real data obtained from vehicle tracking live test runs. Considering the high amount of risk of testing the vehicle in real space-time conditions, it would initially be tested in simulated environment with the use of MATLAB®. The hardware control for an AGV should be robust and precise. An Aerial and a Grounded prototype were developed to test our neural network model in real time situation

    A Novel Bio-Inspired Insertion Method for Application to Next Generation Percutaneous Surgical Tools

    No full text
    The use of minimally invasive techniques can dramatically improve patient outcome from neurosurgery, with less risk, faster recovery, and better cost effectiveness when compared to conventional surgical intervention. To achieve this, innovative surgical techniques and new surgical instruments have been developed. Nevertheless, the simplest and most common interventional technique for brain surgery is needle insertion for either diagnostic or therapeutic purposes. The work presented in this thesis shows a new approach to needle insertion into soft tissue, focussing on soft tissue-needle interaction by exploiting microtextured topography and the unique mechanism of a reciprocating motion inspired by the ovipositor of certain parasitic wasps. This thesis starts by developing a brain-like phantom which I was shown to have mechanical properties similar to those of neurological tissue during needle insertion. Secondly, a proof-of-concept of the bio-inspired insertion method was undertaken. Based on this finding, the novel method of a multi-part probe able to penetrate a soft substrate by reciprocal motion of each segment is derived. The advantages of the new insertion method were investigated and compared with a conventional needle insertion in terms of needle-tissue interaction. The soft tissue deformation and damage were also measured by exploiting the method of particle image velocimetry. Finally, the thesis proposes the possible clinical application of a biologically-inspired surface topography for deep brain electrode implantation. As an adjunct to this work, the reciprocal insertion method described here fuelled the research into a novel flexible soft tissue probe for percutaneous intervention, which is able to steer along curvilinear trajectories within a compliant medium. Aspects of this multi-disciplinary research effort on steerable robotic surgery are presented, followed by a discussion of the implications of these findings within the context of future work
    corecore