160 research outputs found

    Autonomous electrical current monitoring system for aircraft

    Get PDF
    Aircraft monitoring systems offer enhanced safety, reliability, reduced maintenance cost and improved overall flight efficiency. Advancements in wireless sensor networks (WSN) are enabling unprecedented data acquisition functionalities, but their applicability is restricted by power limitations, as batteries require replacement or recharging and wired power adds weight and detracts from the benefits of wireless technology. In this paper, an energy autonomous WSN is presented for monitoring the structural current in aircraft structures. A hybrid inductive/hall sensing concept is introduced demonstrating 0.5 A resolution, < 2% accuracy and frequency independence, for a 5 A – 100 A RMS, DC-800 Hz current and frequency range, with 35 mW active power consumption. An inductive energy harvesting power supply with magnetic flux funnelling, reactance compensation and supercapacitor storage is demonstrated to provide 0.16 mW of continuous power from the 65 μT RMS field of a 20 A RMS, 360 Hz structural current. A low-power sensor node platform with a custom multi-mode duty cycling network protocol is developed, offering cold starting network association and data acquisition/transmission functionality at 50 μW and 70 μW average power respectively. WSN level operation for 1 minute for every 8 minutes of energy harvesting is demonstrated. The proposed system offers a unique energy autonomous WSN platform for aircraft monitoring

    Fuzzy-logic-based control, filtering, and fault detection for networked systems: A Survey

    Get PDF
    This paper is concerned with the overview of the recent progress in fuzzy-logic-based filtering, control, and fault detection problems. First, the network technologies are introduced, the networked control systems are categorized from the aspects of fieldbuses and industrial Ethernets, the necessity of utilizing the fuzzy logic is justified, and the network-induced phenomena are discussed. Then, the fuzzy logic control strategies are reviewed in great detail. Special attention is given to the thorough examination on the latest results for fuzzy PID control, fuzzy adaptive control, and fuzzy tracking control problems. Furthermore, recent advances on the fuzzy-logic-based filtering and fault detection problems are reviewed. Finally, conclusions are given and some possible future research directions are pointed out, for example, topics on two-dimensional networked systems, wireless networked control systems, Quality-of-Service (QoS) of networked systems, and fuzzy access control in open networked systems.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374039, 61473163, and 61374127, the Hujiang Foundation of China under Grants C14002 andD15009, the Engineering and Physical Sciences Research Council (EPSRC) of the UK, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Wireless reconfigurability of fault-tolerant processing systems

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 55-56).This thesis examines the use of wireless data buses for communication in a real-time computer system designed for applications with high reliability requirements. This work is based on the Draper Laboratory Software Based Redundancy Management System (SBRMS), which is a fault-tolerant system architecture that uses data exchange and voting via Ethernet connections between redundant hardware components to detect and recover from faults. For this thesis, a triplex redundant system was developed that utilized the key features from the SBRMS design, including commercial-off-the-shelf hardware components and robust software partitioning, while replacing the standard Ethernet connection with a wireless Ethernet connection. The implementation of this system is presented and the benefits and potential applications of such a system are discussed.by Melinda Y. Tang.M.Eng

    Robust model-based fault estimation and fault-tolerant control : towards an integration

    Get PDF
    To maintain robustly acceptable system performance, fault estimation (FE) is adopted to reconstruct fault signals and a fault-tolerant control (FTC) controller is employed to compensate for the fault effects. The inevitably existing system and estimation uncertainties result in the so-called bi-directional robustness interactions defined in this work between the FE and FTC functions, which gives rise to an important and challenging yet open integrated FE/FTC design problem concerned in this thesis. An example of fault-tolerant wind turbine pitch control is provided as a practical motivation for integrated FE/FTC design.To achieve the integrated FE/FTC design for linear systems, two strategies are proposed. A H∞ optimization based approach is first proposed for linear systems with differentiable matched faults, using augmented state unknown input observer FE and adaptive sliding mode FTC. The integrated design is converted into an observer-based robust control problem solved via a single-step linear matrix inequality formulation.With the purpose of an integrated design with more freedom and also applicable for a range of general fault scenarios, a decoupling approach is further proposed. This approach can estimate and compensate unmatched non-differentiable faults and perturbations by combined adaptive sliding mode augmented state unknown input observer and backstepping FTC controller. The observer structure renders a recovery of the Separation Principle and allows great freedom for the FE/FTC designs.Integrated FE/FTC design strategies are also developed for Takagi-Sugeno fuzzy modelling nonlinear systems, Lipschitz nonlinear systems, and large-scale interconnected systems, based on extensions of the H∞ optimization approach for linear systems.Tutorial examples are used to illustrate the design strategies for each approach. Physical systems, a 3-DOF (degree-of-freedom) helicopter and a 3-machine power system, are used to provide further evaluation of the proposed integrated FE/FTC strategies. Future research on this subject is also outlined

    Optimization and Control of Cyber-Physical Vehicle Systems

    Get PDF
    A cyber-physical system (CPS) is composed of tightly-integrated computation, communication and physical elements. Medical devices, buildings, mobile devices, robots, transportation and energy systems can benefit from CPS co-design and optimization techniques. Cyber-physical vehicle systems (CPVSs) are rapidly advancing due to progress in real-time computing, control and artificial intelligence. Multidisciplinary or multi-objective design optimization maximizes CPS efficiency, capability and safety, while online regulation enables the vehicle to be responsive to disturbances, modeling errors and uncertainties. CPVS optimization occurs at design-time and at run-time. This paper surveys the run-time cooperative optimization or co-optimization of cyber and physical systems, which have historically been considered separately. A run-time CPVS is also cooperatively regulated or co-regulated when cyber and physical resources are utilized in a manner that is responsive to both cyber and physical system requirements. This paper surveys research that considers both cyber and physical resources in co-optimization and co-regulation schemes with applications to mobile robotic and vehicle systems. Time-varying sampling patterns, sensor scheduling, anytime control, feedback scheduling, task and motion planning and resource sharing are examined

    Smart buildings for healthy and sustainable workplace: scoping study report

    Get PDF
    Deficiencies in the design and operation of office buildings can give rise to high social, environmental and economic (triple bottom line) costs. As a result, there are significant pressures and incentives to develop ‘smart building’ technologies that can facilitate improved indoor environment quality (IEQ), and more energy efficient operation of office buildings. IEQ indicators include lighting, ventilation, thermal comfort, indoor air quality and noise. In response to this, the CRC for Construction Innovation commissioned a six-month scoping study (Project no. 2002-043) to examine how different technologies could be used to improve the ‘triple bottom line’ for office buildings. The study was supported by three industry partners, Bovis Lend Lease, Arup, and The Queensland Department of Public Works. The objective of the study was to look at the history, trends, drivers, new technologies and potential application areas related to the operation of healthy and efficient office buildings. The key output from the study was a recommendation for a prototype system for intelligent monitoring and control of an office environment, based on identified market, technical and user requirements and constraints

    Active Fault-Tolerance in Wireless Networked Control Systems

    Get PDF
    In a Wireless Networked Control System (WNCS), several nodes or components of the system may communicate over the common network that connects them together. Thus, there may be communication taking place between the sensors and the controller nodes, among the controllers themselves, among the sensors themselves, among the actuator themselves, and between the controller and the actuator nodes. The purpose of this communication is to improve the performance of the control system. The performance may be a measurable quantity defined in terms of a performance criterion, as in the case of optimal control or estimation, or it may be a qualitative measure described as a desired behaviour. Each node of the WNCS may act as a decision maker, making control as well as communication decisions. The presence of a network brings in constraints in the design of the control system, as information between the various decision makers must be exchanged according to the rules and dynamics of the network. Our goal is to quantify some of these constraints, and design the control system together with the communication system so as both do their best given the constraints. This work in no way attempts to suggest the best way to design a communication network that suits the needs of a particular control system, but some of the results obtained here may be used in conjunction with other results in forming an understanding as to how to proceed in the design of such systems in the future. The work proposes a novel real-time communication protocol based on the Time Division Multiple Access (TDMA) strategy, which has built-in tolerance against the network-induced effects like lost packets, assuring a highly deterministic and reliable behaviour of the overall networked control system, thus allowing the use of classical control design methods with WNCS. Determinism in the transmission times, for sending and for receiving, is assured by a communication schedule that is dynamically updated based on the conditions of the network and the propagation environment. An advanced experimentation platform has been developed, called WiNC, which demonstrates the efficiency of the protocol with two well-known laboratory benchmarks that have very different dynamics, namely the three-tank system and the inverted pendulum system. Wireless nodes belonging to both systems are coordinated and synchronized by a master node, namely the controller node. The WiNC platform uses only open source software and general-purpose (commercial, off-the shelf) hardware, thus making it with a minimal investment (low cost) a flexible and easily extendable research platform for WNCS. And considering the general trend towards the adoption of Linux as a real-time operating system for embedded system in automation, the developed concepts and algorithms can be ported with minimum effort to the industrial embedded devices which already run Linux
    • …
    corecore