825,036 research outputs found
Approximate Dynamic Programming via Sum of Squares Programming
We describe an approximate dynamic programming method for stochastic control
problems on infinite state and input spaces. The optimal value function is
approximated by a linear combination of basis functions with coefficients as
decision variables. By relaxing the Bellman equation to an inequality, one
obtains a linear program in the basis coefficients with an infinite set of
constraints. We show that a recently introduced method, which obtains convex
quadratic value function approximations, can be extended to higher order
polynomial approximations via sum of squares programming techniques. An
approximate value function can then be computed offline by solving a
semidefinite program, without having to sample the infinite constraint. The
policy is evaluated online by solving a polynomial optimization problem, which
also turns out to be convex in some cases. We experimentally validate the
method on an autonomous helicopter testbed using a 10-dimensional helicopter
model.Comment: 7 pages, 5 figures. Submitted to the 2013 European Control
Conference, Zurich, Switzerlan
Dynamic Programming on Nominal Graphs
Many optimization problems can be naturally represented as (hyper) graphs,
where vertices correspond to variables and edges to tasks, whose cost depends
on the values of the adjacent variables. Capitalizing on the structure of the
graph, suitable dynamic programming strategies can select certain orders of
evaluation of the variables which guarantee to reach both an optimal solution
and a minimal size of the tables computed in the optimization process. In this
paper we introduce a simple algebraic specification with parallel composition
and restriction whose terms up to structural axioms are the graphs mentioned
above. In addition, free (unrestricted) vertices are labelled with variables,
and the specification includes operations of name permutation with finite
support. We show a correspondence between the well-known tree decompositions of
graphs and our terms. If an axiom of scope extension is dropped, several
(hierarchical) terms actually correspond to the same graph. A suitable
graphical structure can be found, corresponding to every hierarchical term.
Evaluating such a graphical structure in some target algebra yields a dynamic
programming strategy. If the target algebra satisfies the scope extension
axiom, then the result does not depend on the particular structure, but only on
the original graph. We apply our approach to the parking optimization problem
developed in the ASCENS e-mobility case study, in collaboration with
Volkswagen. Dynamic programming evaluations are particularly interesting for
autonomic systems, where actual behavior often consists of propagating local
knowledge to obtain global knowledge and getting it back for local decisions.Comment: In Proceedings GaM 2015, arXiv:1504.0244
- …
