169 research outputs found

    Delay Constrained Scheduling over Fading Channels: Optimal Policies for Monomial Energy-Cost Functions

    Full text link
    A point-to-point discrete-time scheduling problem of transmitting BB information bits within TT hard delay deadline slots is considered assuming that the underlying energy-bit cost function is a convex monomial. The scheduling objective is to minimize the expected energy expenditure while satisfying the deadline constraint based on information about the unserved bits, channel state/statistics, and the remaining time slots to the deadline. At each time slot, the scheduling decision is made without knowledge of future channel state, and thus there is a tension between serving many bits when the current channel is good versus leaving too many bits for the deadline. Under the assumption that no other packet is scheduled concurrently and no outage is allowed, we derive the optimal scheduling policy. Furthermore, we also investigate the dual problem of maximizing the number of transmitted bits over TT time slots when subject to an energy constraint.Comment: submitted to the IEEE ICC 200

    A Greedy Link Scheduler for Wireless Networks with Fading Channels

    Full text link
    We consider the problem of link scheduling for wireless networks with fading channels, where the link rates are varying with time. Due to the high computational complexity of the throughput optimal scheduler, we provide a low complexity greedy link scheduler GFS, with provable performance guarantees. We show that the performance of our greedy scheduler can be analyzed using the Local Pooling Factor (LPF) of a network graph, which has been previously used to characterize the stability of the Greedy Maximal Scheduling (GMS) policy for networks with static channels. We conjecture that the performance of GFS is a lower bound on the performance of GMS for wireless networks with fading channel

    Relay-Assisted User Scheduling in Wireless Networks with Hybrid-ARQ

    Full text link
    This paper studies the problem of relay-assisted user scheduling for downlink wireless transmission. The base station or access point employs hybrid automatic-repeat-request (HARQ) with the assistance of a set of fixed relays to serve a set of mobile users. By minimizing a cost function of the queue lengths at the base station and the number of retransmissions of the head-of-line packet for each user, the base station can schedule an appropriate user in each time slot and an appropriate transmitter to serve it. It is shown that a priority-index policy is optimal for a linear cost function with packets arriving according to a Poisson process and for an increasing convex cost function where packets must be drained from the queues at the base station.Comment: 14 pages, 5 figures, submitted to the IEEE Transactions on Vehicular Technology in October 2008, revised in March 2009 and May 200

    Utility Optimal Scheduling and Admission Control for Adaptive Video Streaming in Small Cell Networks

    Full text link
    We consider the jointly optimal design of a transmission scheduling and admission control policy for adaptive video streaming over small cell networks. We formulate the problem as a dynamic network utility maximization and observe that it naturally decomposes into two subproblems: admission control and transmission scheduling. The resulting algorithms are simple and suitable for distributed implementation. The admission control decisions involve each user choosing the quality of the video chunk asked for download, based on the network congestion in its neighborhood. This form of admission control is compatible with the current video streaming technology based on the DASH protocol over TCP connections. Through simulations, we evaluate the performance of the proposed algorithm under realistic assumptions for a small-cell network.Comment: 5 pages, 4 figures. Accepted and will be presented at IEEE International Symposium on Information Theory (ISIT) 201

    A Lightweight, Non-intrusive Approach for Orchestrating Autonomously-managed Network Elements

    Full text link
    Software-Defined Networking enables the centralized orchestration of data traffic within a network. However, proposed solutions require a high degree of architectural penetration. The present study targets the orchestration of network elements that do not wish to yield much of their internal operations to an external controller. Backpressure routing principles are used for deriving flow routing rules that optimally stabilize a network, while maximizing its throughput. The elements can then accept in full, partially or reject the proposed routing rule-set. The proposed scheme requires minimal, relatively infrequent interaction with a controller, limiting its imposed workload, promoting scalability. The proposed scheme exhibits attracting network performance gains, as demonstrated by extensive simulations and proven via mathematical analysis.Comment: 6 pages 7, figures, IEEE ISCC'1

    On Asymptotic Optimality of Dual Scheduling Algorithm In A Generalized Switch

    Get PDF
    Generalized switch is a model of a queueing system where parallel servers are interdependent and have time-varying service capabilities. This paper considers the dual scheduling algorithm that uses rate control and queue-length based scheduling to allocate resources for a generalized switch. We consider a saturated system in which each user has infinite amount of data to be served. We prove the asymptotic optimality of the dual scheduling algorithm for such a system, which says that the vector of average service rates of the scheduling algorithm maximizes some aggregate concave utility functions. As the fairness objectives can be achieved by appropriately choosing utility functions, the asymptotic optimality establishes the fairness properties of the dual scheduling algorithm. The dual scheduling algorithm motivates a new architecture for scheduling, in which an additional queue is introduced to interface the user data queue and the time-varying server and to modulate the scheduling process, so as to achieve different performance objectives. Further research would include scheduling with Quality of Service guarantees with the dual scheduler, and its application and implementation in various versions of the generalized switch model

    Optimal Resource Allocation and Relay Selection in Bandwidth Exchange Based Cooperative Forwarding

    Full text link
    In this paper, we investigate joint optimal relay selection and resource allocation under bandwidth exchange (BE) enabled incentivized cooperative forwarding in wireless networks. We consider an autonomous network where N nodes transmit data in the uplink to an access point (AP) / base station (BS). We consider the scenario where each node gets an initial amount (equal, optimal based on direct path or arbitrary) of bandwidth, and uses this bandwidth as a flexible incentive for two hop relaying. We focus on alpha-fair network utility maximization (NUM) and outage reduction in this environment. Our contribution is two-fold. First, we propose an incentivized forwarding based resource allocation algorithm which maximizes the global utility while preserving the initial utility of each cooperative node. Second, defining the link weight of each relay pair as the utility gain due to cooperation (over noncooperation), we show that the optimal relay selection in alpha-fair NUM reduces to the maximum weighted matching (MWM) problem in a non-bipartite graph. Numerical results show that the proposed algorithms provide 20- 25% gain in spectral efficiency and 90-98% reduction in outage probability.Comment: 8 pages, 7 figure
    corecore